

Results on Diffraction at CDF

Mary Convery The Rockefeller University for the CDF Collaboration

XXXIV International Symposium on Multiparticle Dynamics

Sonoma County, California, USA

July 26 - August 1, 2004

Diffraction at CDF

Total cross section	Elastic	Single diffraction	Double diffraction	DPE	SDD
Soft Diffraction					
**PRD 50, 5550 (94)	**PRD 50, 5518 (94)	**PRD 50, 5535 (94)	PRL 87, 141802 (01)	*Accepted by PRL	*PRL 91, 011802 (03)
Hard Diffraction					
		W PRL 78, 2698 (97)	JJ PRL 74, 855 (95)	JJ PRL 85, 4217 (00)	
		JJ PRL 79, 2636 (97)	JJ PRL 80, 1156 (98)		
		B PRL 84, 232 (00)	JJ PRL 81, 5278 (98)		
		J/ ψ PRL 87, 241802 (01)			
		* JJ PRL 84, 5043 (00)			
		* JJ PRL 88, 151802 (02)			
Run II (in progress)					
		*JJ	JJ	*JJ	
		*W,Z		Хс	
				*Bb	

* Using Roman pots on antiproton side

** In Run 0 there were Roman pots on both the proton and antiproton sides

Events with multiple rapidity gaps

- What can we learn about rapidity gap production/survival in events with multiple gaps?
- Can think about it as producing a gap in the presence of an existing gap
 - Is the second gap easier to produce? More likely to survive?

Rapidity gap survival probability

- Motivation: test QCD calculations of the production of a rapidity gap between jets
- 2 factors enter in the calculation
 - QCD (Bj 2-gluon, BFKL, ...)
 - Gap survival probability (products of spectator interactions spoil gap) Bjorken PRD 47, 101 (1993)
- Eliminate gap survival → address QCD

- Jet-gap-jet rate suppressed by
 - Jet radiation: perturbative, calculable in QCD
 - Nonperturbative effects, phenomenological models
- Determine nonperturbative experimentally

Central gaps in Roman-Pot-triggered events in Run I

- Determine gap survival probability experimentally in soft diffraction
- Multiple gaps: first gap survived ⇒ additional gaps also expected to survive
- Measure rate of additional (central) gaps in sample of events with a forward \overline{p} PRL **91**, 011802 (2003)
- survival probability

ISMD 2004

Fraction of events with a gap

Soft gap Survival probability

- $S = R_{2-gap/1-gap}^{1-gap/0-gap}$
- √s=1800 GeV
 S ≈ 0.23 ± 0.07
- √s=630 GeV
 S ≈ 0.29 ± 0.09
- S(630)/S(1800)≈1.29

Prediction for LHC $\sqrt{s} = 14$ **TeV**

 $R^{LHC}(JGJ/JJ) = (1.13\pm0.16)\% / (0.23\pm0.07) = (4.9\pm1.6)\%$

Renormalized gap probability: Multiple gaps K. Goulianos, hep-ph/0203141

Gap probability - norm to 1

- SD: $d^2\sigma/d\Delta y'dt = C \cdot F_p^2(t) \cdot e^{2(\epsilon + \alpha' t)\Delta y} \times \kappa \sigma_0 e^{\epsilon \Delta y'}$
- SDD: $d^5\sigma/d\Delta y'dt... = C \cdot F_p^2(t) \cdot \prod_{i=1,2} e^{2(\epsilon + \alpha' t_i)\Delta y_i} \times \kappa^2 \sigma_0 e^{\epsilon(\Delta y'_1 + \Delta y'_2)}$
- \Rightarrow SDD/SD ~ $\kappa = g(t)/\beta(0) \approx g(0)/\beta(0) = 0.17 \pm 0.02$
- We find for $\sqrt{s} \approx 170-500$ GeV, SDD/SD ≈ 0.2

• DPE: $d^4\sigma/dt_1dt_2d\Delta y_1d\Delta y_2 = \prod_{i=1,2} C \cdot F_p^2(t_i) \cdot e^{2(\epsilon + \alpha' t_i)\Delta y_i} \times \kappa^2 \sigma_0 e^{\epsilon \Delta y'}$

Run I Inclusive Double Pomeron Exchange

- Fraction of Roman-Pot triggered events with an additional forward gap due to DPE accepted for publication in PRL
- Again we see that the second gap is less suppressed

DPE Dijet Production in Run I

 Single gaps – breakdown of QCD factorization

 Double gaps – factorization holds for second gap!

CDF Run II Detector

Run II physics in progress

- Diffractive structure function F^D
 - Single Diffractive dijet production
 - Measure Q² dependence
 - Measure ξ dependence (extend range from Run I)
 - Measure F^D in other processes such as SD W (probes quark) and J/ψ (gluon) production
 - Measure F^D from DPE dijets: F^D vs gap width on other side
- Exclusive production in Double Pomeron Exchange
 - Exclusive dijet, χ_c , $\gamma\gamma$ production as benchmark for exclusive Higgs production at LHC

Run II SD dijets

- Trigger on RP coincidence plus calorimeter tower $E_T > 5 \text{ GeV}$
- Momentum fraction ξ determined by summing over all particles except leading p

- Use calorimeter towers with $E_T > 100 \text{ MeV}$
- MiniPlug energy scale: $\pm 25\% \rightarrow \Delta \log \xi = \pm 0.1$

Jet5 data normalized to RP+jet5 in the region 0.2<ξ<3 This allows us to estimate the contribution from ND events with a coincident RP trigger

SD dijet ξ , Q² dependence

Ratio of SD to ND dijet event rates as a function of x_{Bi}

- No ξ dependence observed within 0.03<ξ<0.1 (confirms Run I result)
- Will use gap+jet data to go beyond reach of RP (ξ<0.03) by summing over particles in calorimeter to determine ξ – possible to reach ξ~0.001 for Q²>100 GeV²
- No appreciable Q² (=E_T²) dependence observed within 100<Q²<1600 GeV
- Can reach higher Q² range using higher-E_T jets once enough statistics are accumulated

Exclusive production in Double Pomeron Exchange

- Exclusive Higgs production in DPE is an attractive channel for observing relatively light Higgs bosons at the LHC
 - Clean environment
 - bb background suppressed
 - Determination of Higgs mass with good accuracy

• Exclusive production of dijets, χ_c , $\gamma\gamma$ in DPE can be studied at the Tevatron and used to constrain predictions for exclusive Higgs

Exclusive Dijet Cross Section Limit

- Trigger: RP+Jet5+GAP
- CDF Run II Preliminary

Mary Convery

Exclusive dijet production in Double Pomeron Exchange

- LO exclusive dijet production:
 - $gg \rightarrow gg$ dominant, $gg \rightarrow q\overline{q}$ strongly suppressed for $m_q^2/M_{jj}^2 \rightarrow 0$ ($J_Z=0$ selection rule) Bialas, Landshoff Berera, Collins Khoze, Martin, Ryskin
- Exclusive qq suppressed for light quarks (u,d,s) or dijet mass N_{jet} large compared to b mass
- Exclusive $gg \rightarrow gg$ contribution might be seen as an excess over inclusive $q\overline{q}$ at high $R_{jj} \sim 1$

Exclusive dijet production in DPE – Heavy flavor quark jets

- Easy to identify HF (*c*,*b*) jets
- Need dijet mass large compared to b mass
- qq suppressed only for direct production of HF quarks need to separate out HF from gluon splitting (significant contribution especially in events with only one tagged b jet)
 - Plan to use double-tagged events with $\Delta \phi$ cut

Exclusive dijet production in DPE – Separating q and g jets

- May see enhancement of gluon jets in exclusive region over inclusive background (mixture of q and g jets)
- Sensitive to light quarks which should be suppressed more than heavy quarks by J_Z=0 rule
- Difficult to separate q and g jets (only statistically)
 - g jets found to have higher charged particle multiplicity than q jets, g (q) jets have more soft (energetic) particles

Exclusive χ_c

- Di-muon trigger (p_T >1.5 GeV, $|\eta|$ <0.6)
- Reject cosmic rays with TOF info
- Select J/ψ mass window
- Require large gaps on p and \overline{p} sides
- 10 candidate events found for exclusive $\chi_c^{\ 0} (\rightarrow J/\psi + \gamma)$
 - ⇒ Upper limit of $\sigma(p\bar{p}\rightarrow p+J/\psi+\gamma+\bar{p}) = 49 \pm 18(\text{stat}) \pm 39(\text{syst}) \text{ pb}$
 - KMR prediction $\sigma \approx 70$ pb (factor 2-5 uncertainty) Eur. Phys. J. C19, 477 (2001)

Summary

- Multiple gaps can be used to eliminate gap survival from QCD calculations
 - Production of additional gaps unsuppressed
 - Factorization in diffractive dijet production restored with the requirement of a second gap (DPE vs SD dijets)
- Diffractive structure function:
 - ξ and Q² dependence measured in SD dijets
 - Work in progress to extend range to lower ξ , higher Q², and to other processes such as SD *W* production
- Exclusive production in DPE:
 - Improved upper limit on exclusive dijet production
 - Upper limit on exclusive χ_c production
 - New triggers for DPE χ_c , *bb*, $\gamma\gamma$ in the works

Diffractive structure function in SD dijets

