BEYOND QUARKS COLORLESS FORCES IN PARTICLE DIFFRACTION

Konstantin Goulianos The Rockefeller University

http://physics.rockefeller.edu/dino/my.html

What is Particle Diffraction?

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Elastic Scattering

Brown U, 11 April 2005

Diffraction Dissociation

Why Study Particle Diffraction?

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Black Hole Eats Star!

In this illustration, an arrow points to the doomed star. Part of its mass, shown by the white stream, was swallowed by the black hole.

Star No Match for Black Hole

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Big bang!

Big Bang

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Big Bang on the East River!

Symposium in Honor of Abraham Pais on his Seventieth Birthday

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Blow-hole at Grand Cayman

Brown U, 11 April 2005

Why should I care about Particle Diffraction?

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

What is Dark Energy?

Brown U, 11 April 2005

Diffractive Particle Interactions K. Goulianos

<u>A short tour of particle physics</u>

Brown U, 11 April 2005

SU3 The Standard Model String theory OCD

Brown U, 11 April 2005

SU3: Law and Order in the Particle Zoo

Brown U, 11 April 2005

The Standard Model

Glashow, Salam, and Weinberg

 $M\gamma$, g = 0 $M_{W, Z}$ ~ 80 M_p M_{top} ~ M_{gold}

Higgs field generates Mass!

$$L = -\frac{1}{4} W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

+ $\overline{L} \gamma^{\mu} \left(i \partial_{\mu} - g \frac{1}{2} \tau . W_{\mu} - g' \frac{Y}{2} B_{\mu} \right) L$
+ $\overline{R} \gamma^{\mu} \left(i \partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) R$
+ $\left[\left(i \partial_{\mu} - g \frac{1}{2} \tau . W_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right]^{2} - V(\phi)$
- $\left(G_{1} \overline{L} \phi R + G_{2} \overline{L} \phi_{c} R$ + hermitian conjugate)

ForceStrength
$$g \rightarrow$$
 strong1 $\gamma \rightarrow$ electromagnetic 10^{-2} $W, Z \rightarrow$ weak 10^{-14}

Brown U, 11 April 2005

Leon & the SM

Brown U, 11 April 2005

String Theory, then?

Particles correspond to the vibration modes of a string in 10 dimensions

Pythagoras applied it to music in 400 BC: 1+2+3+4=10

Gravity is included!

And it surely makes an interesting T-shirt!

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Brown U, 11 April 2005

Collisions and Explosions

Brown U, 11 April 2005

<u>Diffractive</u> Interactions

Suren Bagdasarov

Kenichi Hatakeyama

Asymmetric explosion

Brown U, 11 April 2005

p_T -limited transverse momentum

PL

rapidity:
$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} = \frac{E + p_L}{\sqrt{p_T^2 + m^2}}$$

pseudorapidity: $(m = 0)$ $\eta = -\ln \tan \frac{\theta}{2}$

Brown U, 11 April 2005

Bj, PRD 47 (1993) 101: regions of (pseudo)rapidity devoid of particles

Brown U, 11 April 2005

Forty Years of Diffraction

http://physics.rockefeller.edu/dino/my.html

- I960's BNL: first observation of pp -> pX
- ↓ 1970's Fermilab fixed target, ISR, SPS
 → Regge theory & factorization

<u>Review</u>: KG, Phys. Rep. 101 (1983) 169

- ♣ 1980's UA8: diffractive dijets ⇒ hard diffraction
- 1990's Tev Run-I: Regge factorization breakdown Tev/ HERA: QCD factorization breakdown
- 4 21st C <u>Multigap diffraction</u>: restoration of factorization Ideal for diffractive studies @ LHC

Theory of Diffraction

- > Important for understanding hadron structure and quark <u>confinement</u>.
- > QCD can only be solved perturbatively for cases in which $\alpha_{\rm s}$ << 1.
- > Need to develop new mathematical methods to deal with diffraction.

Run-I A, B: Rapidity Gap Studies

Brown U, 11 April 2005

Brown U, 11 April 2005

CDF-II

MiniPlug Calorimeter

About 1500 wavelength shifting fibers of 1 mm dia. are 'strung' through holes drilled in $36x\frac{1}{4}$ " lead plates sandwiched between reflective Al sheets and guided into bunches to be viewed individually by multi-channel photomultipliers.

Artist's View of MiniPlug

Brown U, 11 April 2005

Diffraction@CDF in Run I 16 papers

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Elastic & Total Cross Sections

The QCD Connection

The exponential rise of $\sigma_T(\Delta y')$ is due to the increase of wee partons with $\Delta y'$

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$\oint \Phi y = \ln s \longrightarrow y$$

$$Im f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y}$$

Total cross section: power law rise with energy

Elastic cross section forward scattering amplitude

Brown U, 11 April 2005

Brown U, 11 April 2005

√s (GeV)

K. Goulianos

★ <u>Unitarity problem</u>: With factorization and std pomeron flux σ_{SD} exceeds σ_{T} at √s ≈ 2 TeV.

Renormalization: normalize the pomeron flux to unity

Brown U, 11 April 2005

Diffractive Particle Interactions

A Scaling Law in Diffraction

Brown U, 11 April 2005

QCD Basis of Renormalization (KG, hep-ph/0205141) $\Delta y'$ Δy color $\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-P-P}(0)} \approx 0.17$ 2 independent variables: $t, \Delta y$ factor $\frac{d^2\sigma}{dt\,d\Delta y} = C \bullet F_p^2(t) \bullet \left\{ e^{(\varepsilon + \alpha' t)\Delta y} \right\}^2 \bullet \kappa \bullet \left\{ \sigma_o e^{\varepsilon \Delta y'} \right\}$ Gap probability

Renormalization removes the s-dependence → SCALING

 $2\varepsilon\Delta y$

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

 $\int_{\Delta y_{\min}}^{\Delta y = \ln s} s^{2\varepsilon \Delta y} \approx s^{2\varepsilon}$

Central and Double Gaps

Double Diffraction Dissociation

> One central gap

Double Pomeron Exchange

> Two forward gaps

SDD: Single+Double Diffraction

> One forward + one central gap

Multigap Renormalization

(KG, hep-ph/0205141)

Brown U, 11 April 2005

Central & Double-Gap CDF Results

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

Hard Diffraction @ CDF

Brown U, 11 April 2005

Diffractive Fractions @ CDF

$\overline{p}p \rightarrow (Hd + X) + \text{gap}$

SD/ND ratio at 1800 GeV

Hd	Fraction(%)
W	1.15 (0.55)
JJ	0.75 (0.10)
Ь	0.62 (0.25)
J/ψ	1.45 (0.25)

All ratios ~ 1% →~ uniform suppression ~ FACTORIZATION

Did the person who ate the missing piece of pie remove any fruit from the rest of the pie!

Brown U, 11 April 2005

Diffractive Dijets @ Tevatron

Factorization breaks down: but how?

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

Brown U, 11 April 2005

Diffractive DIS @ HERA

Pomeron exchange

Color reorganization

Factorization holds (John Collins)

Brown U, 11 April 2005

<u>Tevatron vs HERA:</u> Factorization Breakdown

Predicted in KG, PLB 358 (1995) 379

Brown U, 11 April 2005

Restoring Factorization

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos 48

Diffractive Higgs Production

Interest in diffractive Higgs production

Calibrate on exclusive dijets

Brown U, 11 April 2005

Gap Between Jets

Brown U, 11 April 2005

deep sea

Derive diffractive from inclusive PDFs and color factors

proton

antiproton

valence guarks

Brown U, 11 April 2005

Diffractive Particle Interactions

K. Goulianos

The Rockefeller Experimental HEP Group

Anwar Luc Stefano Michele Mary Koji Christina Andrea Ken

It surely makes an interesting T-shirt!

Brown U, 11 April 2005

Diffractive Particle Interactions

53

K. Goulianos