Predictions of Diffractive Cross Sections in Proton-Proton Collisions

Konstantin Goulianos* The Rockefeller University

arXiv.org > hep-ph > arXiv:1205.1446

High Energy Physics - Phenomenology

MBR Monte Carlo Simulation in PYTHIA8

R. Ciesielski, K. Goulianos

(Submitted on 7 May 2012)

CONTENTS

For details on the phenomenology of the predictions see:

DIFFRACTION 2010 "Diffractive and total *pp* cross sections at the LHC and beyond" (KG) http://link.aip.org/link/doi/10.1063/1.3601406

This talk: an implementation of these cross sections in PYTHIA8.

INTRODUCTION

- The RENORM (renormalization model) soft pp cross sections previously used in MBR (Minimum Bias Rockefeller) simulation are adapted to PYTHIA8.
 - > MBR was successful at Fermilab in fixed target and collider experiments.
- RENORM predictions are based on a parton-model approach in which diffraction is derived from inclusive PDFs and color factors.
- □ Diffractive cross sections and final states are both predicted:
 - Cross sections vs gap width or vs forward momentum loss of proton(s):
 - ✓ Absolute normalization!
 - Hadronization of dissociated proton:
 - A (non-perturbative) "quark string" is introduced and tuned to reproduce the MBR multiplicity and p_T distributions.
 - > dN/d η , p_T, and particle ID: new in this PYTHIA8 implementation (the original MBR simulation produced only π^{\pm} and π^{0}).
 - Unique unitarization based on a saturated "glue-ball" exchange.
- □ Total Cross section ~In²s based on a glue-ball-like saturated-exchange.
 - > Immune to eikonaalization-model dependences.

STUDIES OF DIFFRACTION IN QCD

Non-diffractive

✤ color-exchange → gaps exponentially suppressed

Diffractive

- Colorless vacuum exchange
- → large-gap signature

Goal: probe the QCD nature of the diffractive exchange

DEFINITIONS

DIFFRACTION AT CDF

Diffraction 2012 Lanzarote Diffractive Cross Sections in pp Collisions K. Goulianos

Diffraction 2012 Lanzarote Diffractive Cross Sections in pp Collisions K. Goulianos

7

DD at CDF

Diffraction 2012 Lanzarote Diffractive Cross Sections in pp Collisions K. Goulianos

8

SDD at CDF

CD (DPE) at CDF

Scale s₀ and triple-pom coupling

Reduce the uncertainty in s₀

Saturation glueball?

Cross Sections

 $\Box \text{ SD} \rightarrow \text{single diffraction (single dissociation)}$

 \Box DD \rightarrow double dissociation (double diffraction)

 \Box CD \rightarrow central dissociation (double pomeron exchange)

Total, elastic, and inelastic x-sections

$$\sigma_{\rm ND} = (\sigma_{\rm tot} - \sigma_{\rm el}) - (2\sigma_{\rm SD} + \sigma_{\rm DD} + \sigma_{\rm CD})$$

R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Lett. B 389, 176 (1996)

$$\sigma_{\text{tot}}^{p^{\pm}p} = \begin{cases} 16.79s^{0.104} + 60.81s^{-0.32} \mp 31.68s^{-0.54} & \text{for } \sqrt{s} < 1.8\\ \sigma_{\text{tot}}^{\text{CDF}} + \frac{\pi}{s_0} \left[\left(\ln \frac{s}{s_F} \right)^2 - \left(\ln \frac{s^{\text{CDF}}}{s_F} \right)^2 \right] & \text{for } \sqrt{s} \ge 1.8 \end{cases}$$

K. Goulianos, *Diffraction, Saturation and pp Cross Sections at the LHC*, arXiv:1105.4916.

$$\sqrt{s^{\text{CDF}}} = 1.8 \text{ TeV}, \ \sigma_{\text{tot}}^{\text{CDF}} = 80.03 \pm 2.24 \text{ mb}$$

 $\sqrt{s_F} = 22 \text{ GeV} \qquad s_0 = 3.7 \pm 1.5 \text{ GeV}^2$

Total, elastic, and inelastic x-sections versus \sqrt{s}

Diffraction 2012 LanzaroteDiffractive Cross Sections in pp CollisionsK. Goulianos15

TOTEM vs PYTHIA8-MBR

ALICE tot-inel vs PYTHIA8-MBR

Diffraction 2012 LanzaroteDiffractive Cross Sections in pp CollisionsK. Goulianos17

More on cross sections

Slide 12 from Uri Maor's talk at the LowX-2012

		7 TeV			14 TeV			57TeV		100TeV			$1.2\cdot 10^{16}{\rm TeV}$	
		GLM	KMR	BH	GLM	KMR	BH	GLM	BH	GLM	KMR	BH	GLM	BH
	σ_{tot}	94.2	97.4	95.4	104.0	107.5	107.3	125.0	134.8	134.0	138.8	147.1	393	2067
	σ_{inel}	71.3	73.6	69.0	77.9	80.3	76.3	92.2	92.9	98.5	100.7	100.0	279	1131
	$\frac{\sigma_{inel}}{\sigma_{tot}}$	0.76	0.76	0.72	0.75	0.75	0.71	0.74	0.70	0.74	0.73	0.68	0.71	0.55
MBR	sigma_	tot		98			109		136			144		2257

Difractive x-sections

$$\beta^2(t) = \beta^2(0)F^2(t)$$

$$F^{2}(t) = \left[\frac{4m_{p}^{2} - 2.8t}{4m_{p}^{2} - t} \left(\frac{1}{1 - \frac{t}{0.71}}\right)^{2}\right]^{2} \approx a_{1}e^{b_{1}t} + a_{2}e^{b_{2}t}$$

 $α_1=0.9, α_2=0.1, b_1=4.6 \text{ GeV}^{-2}, b_2=0.6 \text{ GeV}^{-2}, s'=s e^{-\Delta y}, \kappa=0.17,$ $κβ²(0)=σ_0, s_0=1 \text{ GeV}^2, σ_0=2.82 \text{ mb or } 7.25 \text{ GeV}^{-2}$

Diffraction 2012 LanzaroteDiffractive Cross Sections in pp CollisionsK. Goulianos19

Difractive x-sections of \sqrt{s}

□ Supress x-sections at small gaps by a factor S using the error function with $\Delta y_s=2$ for SD and DD, and $\Delta y=\Delta y_1+\Delta y_2=2$ for CD (DPE).

$$S = \frac{1}{2} \left[1 + erf\left(\frac{\Delta y - \Delta y_S}{\sigma_S}\right) \right]$$

ALICE SD and DD vs PYTHIA8-MBR

Diffraction 2012 Lanzarote Diffractive Cross Sections in pp Collisions K. Goulianos 21

SD and DD at 7 TeV MBR vs PYTHIA8-4C

□ The differences between the PYTHIA8(4C) and MBR predictions are mainly due to the $(1/M2)^{1+\epsilon}$ behavior, with ϵ =1.104 in MBR vs 1,08 in PYTHIA8(4C).

CD (DPE) x-sections at 7 TeV versus (a) $\Delta y = \Delta y_1 + \Delta y_2$ and (b) Δy_1

Both figures are MBR predictions with a ∆y=2 cut-off in the error function.
 The normalization is absolute with no model uncertainty other than that due to the determination of the parameters in the formulas as determined from data

SUMMARY ← introduction

- □ The ENORM (renormalization model) soft *pp* cross sections previously used in MBR (Minimum Bias Rockefeller) simulation are adapted to PYTHIA8.
 - MBR was successful at Fermilab in fixed target and collider experiments.
- RENORM predictions are based on a parton-model approach, in which diffraction is derived from inclusive PDFs and color factors.
- □ Diffractive cross sections and final states are both predicted:
 - Cross sections vs gap width or vs forward-momentum loss of proton(s):
 Absolute normalization!
 - Hadronization of dissociated proton:
 - > A (non-perturbative) "quark string" is introduced and tuned to reproduce the MBR multiplicity and p_T distributions.
 - > dN/d η , p_T, and particle ID: new in this PYTHIA8 implementation (the original MBR simulation produced only π^{\pm} and π^{0}).

> Unique unitarization based on a saturated "glue-ball" exchange.

- □ Total Cross section ~In²s based on a glue-ball-like saturated-exchange.
 - Immune to eikonaalization-model dependences.

Thank you for your attention

References in arXiv:1205.1446v2 [hep-ph]

- K. Goulianos, Hadronic diffraction: where do we stand?, hep-ph/0407035;
 K. Goulianos, Diffraction in QCD, arXiv:hep-ph/020314.
- T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 (2006) 026, Comput. Phys. Comm. 178 (2008) 852, arXiv:hep-ph/0603175,arXiv:0710.3820.
- [3] R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Lett. B 389, 176 (1996).
- [4] K. Goulianos, Diffraction, Saturation and pp Cross Sections at the LHC, arXiv:1105.4916.
- [5] A. Donnachie, P. V. Landshoff, Nucl. Phys. B **303**, 634 (1988).
- [6] K. Goulianos, Phys. Lett. **B358**, 379 (1995).
- T. Affolder et al. (CDF Collab.), Double Diffraction Dissociation at the Fermilab Tevatron Collider, Phys. Rev. Lett. 87, 141802 (2001).
- [8] D. Acosta et al. (CDF Collab.), Inclusive double Pomeron exchange at the Fermilab Tevatron pp collider, Phys. Rev. Lett. 93, 141601 (2004).
- [9] R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Rev. D 59, 114017 (1999).
- 10] http://en.wikipedia.org/wiki/Error_function
- [11] K. Goulianos, Diffractive interactions of hadrons at high energies, Phys. Rep. 101, 169 (1983).

Volume 193, number 1	PHYSICS LETTERS B	multiplicities	9 July 1987	
Diffraction 2012 Lanzarote	Diffractive Cross Sections in pp C	ollisions K. (Goulianos	25