Predictions of Diffractive Cross Sections in Proton-Proton Collisions

Konstantin Goulianos* The Rockefeller University

 $arXiv.org > hep-ph > arXiv:1205.1446$

High Energy Physics - Phenomenology

MBR Monte Carlo Simulation in PYTHIA8

R. Ciesielski, K. Goulianos

(Submitted on 7 May 2012)

CONTENTS

For details on the phenomenology of the predictions see:

DIFFRACTION 2010 "Diffractive and total pp cross sections at the LHC and beyond" (KG) http://link.aip.org/link/doi/10.1063/1.3601406

This talk: an implementation of these cross sections in PYTHIA8.

INTRODUCTION

- □ The RENORM (renormalization model) soft *pp* cross sections previously used in MBR (Minimum Bias Rockefeller) simulation are adapted to PYTHIA8.
	- \triangleright MBR was successful at Fermilab in fixed target and collider experiments.
- □ RENORM predictions are based on a parton-model approach in which diffraction is derived from inclusive PDFs and color factors.
- \Box Diffractive cross sections and final states are both predicted:
	- \triangleright Cross sections vs gap width or vs forward momentum loss of proton(s):
		- \checkmark Absolute normalization!
	- > Hadronization of dissociated proton:
		- \triangleright A (non-perturbative) "quark string" is introduced and tuned to reproduce the MBR multiplicity and p_T distributions.
		- \triangleright dN/d_n, p_T, and particle ID: new in this PYTHIA8 implementation (the original MBR simulation produced only π^{\pm} and π^{0}).
	- Unique unitarization based on a saturated "glue-ball" exchange.
- \Box Total Cross section ~ln²s based on a glue-ball-like saturated-exchange.
	- \triangleright Immune to eikonaalization-model dependences.

STUDIES OF DIFFRACTION IN QCD

Non-diffractive

❖ color-exchange → gaps exponentially suppressed

Diffractive

- **❖ Colorless vacuum exchange**
- **→ large-gap signature**

Goal: probe the QCD nature of the diffractive exchange

DEFINITIONS

DIFFRACTION AT CDF

DD at CDF

SDD at CDF

CD (DPE) at CDF

Scale s_o and triple-pom coupling

Reduce the uncertainty in s_0

Saturation glueball?

Cross Sections

 \square SD \rightarrow single diffraction (single dissociation)

 \Box DD \rightarrow double dissociation (double diffraction)

 \Box CD \rightarrow central dissociation (double pomeron exchange)

Total, elastic, and inelastic x-sections

$$
\sigma_{\text{ND}} = (\sigma_{\text{tot}} - \sigma_{\text{el}}) - (2\sigma_{\text{SD}} + \sigma_{\text{DD}} + \sigma_{\text{CD}})
$$

R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Lett. B 389, 176 (1996)

$$
\sigma_{\text{tot}}^{p \pm p} = \begin{cases} 16.79s^{0.104} + 60.81s^{-0.32} \mp 31.68s^{-0.54} & \text{for } \sqrt{s} < 1.8\\ \sigma_{\text{tot}}^{\text{CDF}} + \frac{\pi}{s_0} \left[\left(\ln \frac{s}{s_F} \right)^2 - \left(\ln \frac{s^{\text{CDF}}}{s_F} \right)^2 \right] & \text{for } \sqrt{s} \ge 1.8 \end{cases}
$$

K. Goulianos, Diffraction, Saturation and pp Cross Sections at the LHC, $arXiv:1105.4916.$

$$
\sqrt{s^{CDF}} = 1.8 \text{ TeV}, \sigma_{\text{tot}}^{\text{CDF}} = 80.03 \pm 2.24 \text{ mb}
$$

 $\sqrt{s_F} = 22 \text{ GeV}$ $s_0 = 3.7 \pm 1.5 \text{ GeV}^2$

Total, elastic, and inelastic x-sections versus √s

TOTEM vs PYTHIA8-MBR

ALICE tot-inel vs PYTHIA8-MBR

More on cross sections

Slide 12 from Uri Maor's talk at the LowX-2012

Difractive x-sections

$$
\beta^2(t) = \beta^2(0)F^2(t)
$$

$$
F^{2}(t) = \left[\frac{4m_{p}^{2} - 2.8t}{4m_{p}^{2} - t} \left(\frac{1}{1 - \frac{t}{0.71}}\right)^{2}\right]^{2} \approx a_{1}e^{b_{1}t} + a_{2}e^{b_{2}t}
$$

 α_1 =0.9, α_2 =0.1, b₁=4.6 GeV⁻², b₂=0.6 GeV⁻², s'=s e^{-∆y}, κ =0.17, κβ²(0)= σ_0 , s $_0$ =1 GeV², σ_0 =2.82 mb or 7.25 GeV⁻²

Difractive x-sections of √s

□ Supress x-sections at small gaps by a factor S using the error function with Δy _S=2 for SD and DD, and $\Delta y = \Delta y_1 + \Delta y_2 = 2$ for CD (DPE).

$$
S = \frac{1}{2} \left[1 + erf\left(\frac{\Delta y - \Delta y_S}{\sigma_S}\right) \right]
$$

ALICE SD and DD vs PYTHIA8-MBR

SD and DD at 7 TeV MBR vs PYTHIA8-4C

 \Box The differences between the PYTHIA8(4C) and MBR predictions are mainly due to the $(1/M2)^{1+\epsilon}$ behavior, with $\epsilon=1.104$ in MBR vs 1,08 in PYTHIA8(4C).

CD (DPE) x-sections at 7 TeV versus (a) $\Delta y = \Delta y_1 + \Delta y_2$ and (b) Δy_1

 \Box Both figures are MBR predictions with a $\Delta y=2$ cut-off in the error function. The normalization is absolute with no model uncertainty other than that due to the determination of the parameters in the formulas as determined from data

SUMMARY \leftarrow introduction

- □ The ENORM (renormalization model) soft *pp* cross sections previously used in MBR (Minimum Bias Rockefeller) simulation are adapted to PYTHIA8.
	- \triangleright MBR was successful at Fermilab in fixed target and collider experiments.
- □ RENORM predictions are based on a parton-model approach, in which diffraction is derived from inclusive PDFs and color factors.
- □ Diffractive cross sections and final states are both predicted:
	- \triangleright Cross sections vs gap width or vs forward-momentum loss of proton(s): \checkmark Absolute normalization!
	- \triangleright Hadronization of dissociated proton:
		- \triangleright A (non-perturbative) "quark string" is introduced and tuned to reproduce the MBR multiplicity and p_T distributions.
		- \triangleright dN/d_n, p_T, and particle ID: new in this PYTHIA8 implementation (the original MBR simulation produced only π^{\pm} and π^{0}).

Unique unitarization based on a saturated "glue-ball" exchange.

- \Box Total Cross section ~ln²s based on a glue-ball-like saturated-exchange.
	- \triangleright Immune to eikonaalization-model dependences.

Thank you for your attention

References in arXiv:1205.1446v2 [hep-ph]

- [1] K. Goulianos, *Hadronic diffraction: where do we stand?*, hep-ph/0407035; K. Goulianos, *Diffraction in QCD*, arXiv:hep-ph/020314.
- [2] T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 (2006) 026, Comput. Phys. Comm. 178 (2008) 852, arXiv:hep-ph/0603175, arXiv:0710.3820.
- [3] R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Lett. B 389 , 176 (1996).
- [4] K. Goulianos, *Diffraction*, *Saturation* and pp Cross Sections at the LHC, arXiv:1105.4916.
- [5] A. Donnachie, P. V. Landshoff, Nucl. Phys. B **303**, 634 (1988).
- [6] K. Goulianos, Phys. Lett. **B358**, 379 (1995).
- [7] T. Affolder et al. (CDF Collab.), *Double Diffraction Dissociation at the Fermilab Tevatron Collider*, Phys. Rev. Lett. **87**, 141802 (2001).
- D. Acosta et al. (CDF Collab.), Inclusive double Pomeron exchange at the Fermilab 181 *Tevatron pp collider*, Phys. Rev. Lett. **93**, 141601 (2004).
- [9] R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Rev. D 59, 114017 (1999).
- 10 http://en.wikipedia.org/wiki/Error_function
- 11 K. Goulianos, *Diffractive interactions of hadrons at high energies*, Phys. Rep. 101, 169 $(1983).$

