Diffractive W/Z & Exclusive JJ @ CDF II

K. GoulianosThe Rockefeller UniversityOn behalf of the CDF II collaboration

DIS 2008, 7-11 April 2008, University College London

XVI International Workshop on Deep-Inelastic Scattering and Related Subjects

Contents

- > Introduction
- Diffractive W/Z
- > Exclusive JJ

Introduction

Diffraction @ CDF

Breakdown of factorization - Run I

Hard diffractive fractions - Run I

$$\overline{p}p \rightarrow (+X) + \text{gap}$$

Fraction: SD/ND ratio @ 1800 GeV

	Fraction %
JJ	0.75 +/- 0.10
W	0.115 +/- 0.55
Ь	0.62 +/- 0.25
J /ψ	1.45 +/- 0.25

All fractions ~ 1% (differences due to kinematics)

- ~ uniform suppression
- > ~ FACTORIZATION!

Multi-gap diffraction - Run I → restoring factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

ξ&β dependence of FD_{jj} - Run I

 $\frac{d\sigma_{incl}}{d\xi} \propto constant$

Pomeron dominated

Small Q^2 dependence in region 100 < Q^2 < 10,000 GeV²

⇒ Pomeron evolves as the proton!

Diffractive structure function - Run II

t- dependence

Fit $d\sigma/dt$ to a double exponential:

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

- > No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < 4,500 GeV² across soft and hard diffraction!

Looks like...

... the underlying diffractive PDF on a hard scale is similar to the proton PDF except for small differences presumably due to the requirement of combining with the soft PDF to form a spin 1 color singlet with vacuum quantum numbers.

Diffractive W/Z production

- Diffractive W production probes the quark content of the Pomeron
 - To leading order, the W is produced by a quark in the Pomeron

Production by gluons is suppressed by a factor of α_S, and can be distinguished from quark production by an associated jet

Diffractive W/Z - motivation

- In Run I, combining diffractive dijet production with diffractive W production was used to determine the quark/gluon content of the Pomeron ===→
- In Run II, we aim at determining the diffractive structure function for a more direct comparison with HERA.
- To accomplish this we use:
 - New forward detectors
 - New methodology
 - More data

13

The DF II detectors

RPS acceptance $\sim 80\%$ for 0.03 < x < 0.1 and |t| < 0.1

Diffractive W/Z analysis

Using RPS information:

- No background from gaps due to multiplicity fluctuations
- No gap survival probability problem
- The RPS provides accurate event-by-event ξ measurement
- Determine the full kinematics of diffractive W production by obtaining η_{ν} using the equation:

$$\xi^{RPS} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_\nu} \quad \text{where} \quad \frac{\xi^{cal}}{\xi^{cal}} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

This allows determination of:

- W mass
- X_{Bi}
- Diffractive structure function

16

W/Z selection requirements

Standard W/Z selection

$$E_T^e(p_T^{\mu} > 25 \text{ GeV})$$

 $M_T > 25 \text{ GeV}$

$$40 < M_T^W < 120 \text{ GeV}$$

$$|Z_{\rm vtx}| < 60$$
 cm

$$E_T^{e1}(p_T^{\mu 1} > 25 \text{ GeV})$$

$$E_T^{e2}(p_T^{\mu 2} > 25 \text{ GeV})$$

$$66 < M^{Z} < 116 \text{ GeV}$$

$$|Z_{\rm vtx}| < 60$$
 cm

Diffractive W/Z selection

- □ RPS trigger counters MIP
- □ RPS track 0.03< ξ < 0.10, |t|<1
- □ W→ 50 < $M_W(\xi^{RPS}, \xi^{cal})$ < 120
- \Box Z \rightarrow ξ^{cal} < 0.1

Reconstructed diffractive W mass

18

Rejection of multiple interaction events

19

Diffractive W/Z results

```
R^{W} (0.03 < \xi < 0.10, |t|<1)= [0.97 ± 0.05(stat) ± 0.11(syst)]%
```

Run I: $R^{W} = 1.15 \pm 0.55 \%$ for $\xi < 0.1 \implies$ estimate **0.97 ± 0.47 %** in **0.03 < \xi < 0.10 & |t|<1)**

 R^{z} (0.03 < x < 0.10, |t|<1)= [0.85 ± 0.20(stat) ± 0.11(syst)]%

CDF/DØ Comparison – Run I (ξ < 0.1)

CDF PRL 78, 2698 (1997)

 $R^{w}=[1.15\pm0.51(stat)\pm0.20(syst)]\%$

gap acceptance Agap=0.81

uncorrected for Agap →

 $R^{\mathbf{w}} = (0.93 \pm 0.44)\%$

(Agap calculated from MC)

DØ Phys Lett B **574**, 169 (2003)

 $R^{w}=[5.1\pm0.51(stat)\pm0.20(syst)]\%$

gap acceptance $A^{gap}=(0.21\pm4)\%$

uncorrected for Agap→

R**w**=[0.89+0.19-0.17]%

 R^{z} =[1.44+0.61-0.52]%

Stay connected tor FD_{w/z}

Exclusive dijet and Higg production

URL: http://link.aps.org/abstract/PRD/v77/e052004 DOI: 10.1103/PhysRevD.77.052004

Exclusive dijet signal

dijet mass fraction - all jets

Excess observed over POMWIG MC prediction at large Rjj

0.4

0.2

0

Exclusive b-jets are suppressed as expected (J_7 = 0 selection rule)

0.6

0.8

 $R_{ii} = M_{ii} / M_X$

Exclusive dijet content of DPE data

Shape of excess of events at high R_{jj} is well described by both ExHuME & DPEMC

HF suppression & incl. MC based signal

HF vs. incl

Invert HF vertically and compare with 1-MC/DATA

good agreement observed

ExHuME vs. DPEMC and vs. data

Exclusive dijet x-section vs. M_{ij}

<u>curve</u>: ExHuME hadron-level exclusive dijet cross sections vs. dijet mass <u>points</u>: derived from CDF excl. dijet x-sections using ExHuME

Stat. and syst. errors are propagated from measured cross section uncertainties using $\,M_{ii}\,$ distribution shapes of ExHuME generated data.

- Introduction
 - diffractive PDF looks like proton PDF
- Diffractive W/Z RPS data
 - > W diffractive fraction in agreement with Run I
 - W/Z diffractive fractions equal within error
 - New techniques developed to enable extracting the diffractive structure function in W production
- Exclusive dijet (Higgs?) production
 - Results favor ExHuME over DPEMC model Phys. Rev. D 77, 052004 (2008)