DIFFRACTION RESULTS FROM CDF

Konstantin Goulianos
The Rockefeller University
Representing the CDF Collaboration

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011)

April 11-15, 2011 Newport News, VA USA

CONTENTS

- Diffraction at CDF in Run I
- ☐ Diffraction at CDF in Run II why?
 - □ Diffractive *W* and *Z* production
 - ☐ Diffractive structure function in dijet production
 - ☐ Central gaps in minimum bias and dijet events
- Exclusive production
- ☐ CONCLUSIONS

Diffraction at CDF in Run I

Find references in http://physics.rockefeller.edu/publications.html

Elastic scattering σ_T =Im f_{el} (t=0) σ_T =Im σ_T $\sigma_$

Single Diffraction or Single Dissociation

Double Diffraction or Double Dissociation

Double Pom. Exchange or Central Dissociation

Single + Double Diffraction (SDD)

multigap W/two gaps

→ part of SD

$$1\text{-}x_{L}\equiv\xi=\frac{M^{2}}{s}$$

No radiation →

no price paid for increasing diffractive gap size

$$\left| \left(\frac{\text{d}\sigma}{\text{d}\,\Delta\eta} \right)_{t\,=\,0}^{} \approx \text{constant} \, \Rightarrow \frac{\text{d}\sigma}{\text{d}\xi} \propto \frac{1}{\xi} \quad \Rightarrow \quad \frac{\text{d}\sigma}{\text{d}M^2} \propto \frac{1}{M^2}$$

Highlights of Run I Results

Use MBR (Minimum Bias Rockefeller) MC for forward physics

TOTAL SD X-SECTION

suppressed relative to Regge

DD at CDF

http://physics.rockefeller.edu/publications.html

$$\frac{d^{3}\sigma_{\text{DD}}}{dtdM_{1}^{2}dM_{2}^{2}} = \frac{d^{2}\sigma_{\text{SD}}}{dtdM_{1}^{2}} \frac{d^{2}\sigma_{\text{SD}}}{dtdM_{2}^{2}} / \frac{d\sigma_{el}}{dt}$$

$$= \frac{\left[\kappa \beta_{1}(0)\beta_{2}(0)\right]^{2}}{16\pi} \frac{s^{2\epsilon}e^{b_{\text{DD}}t}}{(M_{1}^{2}M_{2}^{2})^{1+2\epsilon}}$$

$$\frac{d^3\sigma_{\mathrm{DD}}}{dtd\Delta\eta d\eta_c} = \left[\frac{\kappa\beta^2(0)}{16\pi}\,e^{2[\alpha(t)-1]\Delta\eta}\right] \left[\kappa\beta^2(0) \left(\frac{s'}{s_0}\right)^{\epsilon}\right]$$
 gap probability x-section

SDD at CDF

http://physics.rockefeller.edu/publications.html

 Excellent agreement between data and MBR (MinBiasRockefeller) MC

$$\frac{d^5\sigma}{dt_{\bar{p}}dtd\xi_{\bar{p}}d\Delta\eta d\eta_c} = \left[\frac{\beta(t)}{4\sqrt{\pi}}\,e^{\left[\alpha(t_{\bar{p}})-1\right]\ln(1/\xi)}\right]^2 \times \kappa \left\{\kappa \left[\frac{\beta(0)}{4\sqrt{\pi}}e^{\left[\alpha(t)-1\right]\Delta\eta}\right]^2\,\kappa \left[\beta^2(0)\left(\frac{s''}{s_{\circ}}\right)^{\epsilon}\right]\right\}$$

DPE / CD at CDF

http://physics.rockefeller.edu/publications.html

- Excellent agreement between data and MBR
- → low and high masses are correctly implemented

Gap survival probability

Run I Hard diffractive fractions

$$\overline{p}p \rightarrow (/+X) + gap_p \text{ or } gap_{pbar}$$

Diffractive Structure Function (DSF)

breakdown of QCD factorization

$$\overline{p}p \rightarrow \overline{p} + [dijet + X]$$

suppression factor is 2.5 times larger than in soft diffraction

This contradicted the RENORM prediction of suppression factor ~ 8 → as in soft diffraction

 $\beta \rightarrow$ momentum fraction of parton in "Pomeron"

Puzzles from run I results

- gap fractions are suppressed relative to theory predictions, both for soft (Regge) and hard diffraction ...but
- factorization holds among processes at the same energy, just like at HERA
- □ DSF at √s=1800 GeV suppressed by factor ~ 20 while Regge by factor $\sim 8 \rightarrow$ contradicts RENORM prediction, but...see further down in the talk

Diffraction at CDF in Run II - why?

☐ Resolve question on soft vs. hard diffraction suppression - are they really different? ☐ Make precise measurement of the DSF in dijets sensitive to gluon pdf's ☐ Measure diffractive *W/Z* production sensitive to quark pdf's Central gaps in soft and hard diffraction BFKL, Mueller-Navelet, other Observe and measure exclusive dijet production important for diffractive Higgs searches

The CDF II Detector – plan view

Measurements w/the MiniPlugs

Multiplicity of SD and ND events

NIM A 430 (1999) NIM A 496 (2003) NIM A 518 (2004)

ADC counts in MiniPlug towers in a pbar-p event at 1960 GeV.

- "jet" indicates an energy cluster and may be just a hadron.
- 1000 counts ~ 1 GeV

Dynamic Alignment of RPS Detectors

Method: iteratively adjust the RPS X and Y offsets from the nominal beam axis until a maximum in the b-slope is obtained @ t=0.

RPS acceptance

FIG. 3: RPS acceptance as a function of ξ and t obtained from simulation using the transport parameters between the nominal interaction point and the Roman pots.

Diffractive W/Z production

PRD 82, 112004 (2010)

- > In LO QCD W probes the quark content of diffractive exchange
- Production by gluons is suppressed by a factor of α_{S} , and can be distinguished from quark production by an associated jet

Data and event selection

0.6 fb-1 of integrated luminosity data

TABLE I: W and Z events passing successive selection requirements.

	$W \to e \nu$	$W \to \mu \nu$	$W \rightarrow l(e/\mu)\nu$	-
RPS-trigger-counters	6663	5657	$12 \ 320$	
RPS-track	5124	4201	9325	
$50 < M_W < 120$	192	160	352	← (W)
	$Z \rightarrow ee$	$Z o \mu \mu$	$Z \rightarrow ll$	
RPS-trigger-counters	650	341	991	
RPS-track	494	253	747	
$\xi^{\rm cal} < 0.10$	24	12	36	← (7)

$$\xi_{\bar{p}}^{\text{cal}} = \sum_{i=1}^{N_{\text{towers}}} \frac{E_{\text{T}}^{i}}{\sqrt{s}} e^{-\eta^{i}}.$$

Diffractive W/Z analysis

Using RPS information:

- No background from gaps due to multiplicity fluctuations
- No gap survival probability problem
- The RPS provides accurate event-by-event ξ measurement
- Determine the full kinematics of diffractive W production by obtaining η_{ν} using the equation:

$$\xi^{RPS} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_{\nu}} \quad \text{where} \quad \xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

This allows determination of:

- W mass and potentially (not enough range in present case)
 - x_{Bi} distribution
 - Diffractive structure function

Reconstructed M_Wdiff

□Reconstructed W mass using the 352 diffractive events fitted with a Gaussian.

M_W from inclusive $W \rightarrow e/\mu + v$

Method: compare transverse MW data with MC

$$M_T^W = \sqrt{2(p_T^l p_T^\nu - \overrightarrow{p}_T^l \cdot \overrightarrow{p}_T^\nu)}/c$$

 $M_{\rm W}^{\rm diff} = 80.9 \pm 0.7 \, {\rm GeV/c^2}$

ξ^{cal} distribution

Diffractive W/Z fractions

$$R_{W}(R_{Z}) = \frac{2 \cdot N_{SD}^{W}(N_{SD}^{Z})}{A_{RPS} \cdot \epsilon_{RPStrig} \cdot \epsilon_{RPStrk} \cdot N_{ND}^{1-int}}$$

$$\sim 80\% \qquad \qquad \uparrow \qquad \sim 87\%\% \qquad \uparrow$$

$$68-80\% \qquad \qquad f1-int = (25.6\pm 1.2)\%$$

$$R_W = [1.00 \pm 0.05(\text{stat}) \pm 0.10(\text{syst})]\%$$

 $R_Z = [0.88 \pm 0.21(\text{stat}) \pm 0.08(\text{syst})]\%$

Run I: $R^{W} = 1.15 \pm 0.55 \%$ for $\xi_{min} < \xi < 0.1$

 \rightarrow [0.88±0.21 (stat)% within 0.03 < ξ < 0.10 & |t|<1

DSF from Dijets in Run II

$$R(x_{Bj}) = \frac{Rate_{jj}^{SD}(x_{Bj})}{Rate_{jj}^{ND}(x_{Bj})} \Rightarrow \frac{F_{jj}^{SD}(x_{Bj})}{F_{jj}^{ND}(x_{Bj})}$$

- The x_{Bj}-distribution of the SD/ND ratio has no strong Q² dependence
- the slope of the t-distribution is independent of Q² for |t| < 1 (GeV/c)²
- does the t-distribution have a diffraction minimum at |t| ~ 2.5 (GeV/c)² (?)
- ➤ all three results are / would be → "first observation"

Diffractive structure function – Run II

- Small Q² dependence in region 100<Q²<10 000 GeV² where $d\sigma^{SD}/dE_{T}$ & $d\sigma^{ND}/dE_{T}$ vary by a factor of ~10⁴
 - → The Pomeron evolves as the proton!

Diffractive structure function – Run II

t - dependence

Fit $d\sigma/dt$ to a double exponential:

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

- No diffraction dips at |t| < 1 GeV²
- No Q2 dependence in slope from inclusive up to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q2 < ~ 10 000 GeV2!

Dijet E_T distributions

→ similar for SD and ND over 4 orders of magnitude

CENTRAL GAPS

The distribution of the gap fraction $R_{gap} = N_{gap}/N_{all}$ vs $\Delta \eta$ for MinBias $(CLC_p \cdot CLC_{pbar})$ and MiniPlug jet events $(MP_p \cdot MP_{pbar})$ of $E_{T(jet1,2)} > 2$ GeV and $E_{T(jet1,2)} > 4$ GeV. The distributions are similar in shape within the uncertainties.

σ^T_{SD} and dijets

EXCLUSIVE Dijet -> Excl. Higgs THEORY CALIBRATION

JJ PRD 77, 052004 (2008)

PRL 99, 242002 (2007)

 χ_{c} PRL 242001 (2007)

Exclusive $\gamma\gamma$ production

Phys.Rev.Lett. 99,242002 (2007)

$$E_T(\gamma) > 5 \text{ GeV}$$

 $|\eta(\gamma)| < 1.0$

- \Box 3 $\gamma\gamma$ / $\pi^{o}\pi^{o}$ evts observed
 - > 2 γγ candidates
 - \geq 1 $\pi^0\pi^0$ candidate

V.A.Khoze et al. Eur. Phys. J C38, 475 (2005):

$$\sigma(\text{with CDF cuts}) = 56^{+72}_{-24} \text{ fb} \implies 0.8^{+1.6}_{-0.5} \text{ events}$$

- \Box 2 events $\rightarrow \sigma \sim 90$ fb, in agreement with theory
- cannot claim discovery as bgd study was made *a posteriori*

Exclusive Dimuon Production

$$p+p \rightarrow p+\mu^+\mu^-+p$$

 $3 \text{ GeV/c}^2 < M_{\mu\mu} < 4 \text{ GeV/c}^2$

many physics processes in this data set:

exclusive χ_c in DPE

Exclusive J/ ψ and ψ (2s)

 J/ψ production

 243 ± 21 events $d\sigma/dy|_{v=0} = 3.92 \pm 0.62 \text{ nb}$

Theoretical Predictions

- 2.8 nb [Szczurek07,],
- 2.7 nb [Klein&Nystrand04],
- 3.0 nb [Conclaves&Machado05], and
- 3.4 nb [Motkya&Watt08].

$\Psi(2s)$ production

34±7 events

$$d\sigma/dy|_{y=0} = 0.54 \pm 0.15 \text{ nb}$$

 $R = \psi(2s)/J/\psi = 0.14 \pm 0.05$

In agreement with HERA: $R = 0.166 \pm 0.012$ in a similar kinematic region

Exclusive $\chi_c \rightarrow J/\psi(\rightarrow \mu^+\mu^-) + \gamma$

PRL 242001 (2009)

- \Box Allowing EM towers (E_T >80MeV)
 - \rightarrow large increase in the J/ ψ peak & minor change in the $\psi(2s)$ peak
- → Evidence for:

$$\chi_c \rightarrow J/\psi + \gamma$$
 production

 $d\sigma/dy|_{y=0} = 75 \pm 14 \text{ nb},$ compatible with theoretical predictions

■160 nb (Yuan 01) 90 nb (KMR01)

SUMMARY

- □ Diffractive W and Z fractions: final results based on Run II CDF data using a Roman Pot Spectrometer (RPS) to measure the recoil pbar momentum
- □ The W fraction is in good agreement with the fraction measured in Run I based on a rapidity gap analysis
- □ The Z fraction is about 10% smaller than the W fraction, just as in nondiffractive events
- □ Diffractive structure function in dijet production:
 - → no strong Q2 and t dependence over a wide range
- □ Central rapidity gaps in min-bias and very forward dijet events:
 - \rightarrow same dependence on $\Delta \eta = \eta_{max} \eta_{min}$
- □ exclusive production observed/measured for several processes

340000

DIFFRACTIVE AND NON-DIFFRACTIVE INTERACTIONS

Non-diffractive → no "large" gaps

* Color-exchange

<u>Diffractive</u> → gaps

Colorless exchange with vacuum quantum numbers

rapidity gap

Incident hadrons acquire color and break apart

Incident hadrons retain their quantum numbers remaining colorless

pseudo-DECONFINEMENT

Goal: understand the QCD nature of the diffractive exchange

ξ&β dependence of FD_{jj} –

Diffractive dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what conditions?)

Pomeron exchange

Color reorganization

$$F_2^{D(3)}(\xi, x, Q^2) \propto \frac{1}{\xi^{1+\mathcal{E}}} \cdot F_2(x, Q^2)$$

Results favor color reorganization