Diffraction @ CDF

Konstantin Goulianos *The Rockefeller University*

The Future of QCD at the Tevatron Fermilab, 20-22 May 2004

Fermilab 20-22 May 2004

2

Run #	Dates	pb-1	Physics
1-0	1988-89	~5	Elastic, Diffractive & Total x-sections
1-A,B	1992-95	~120	Rapidity Gaps
1-C	1995-96	~10	Roman Pots

3

Run 1-0 (1988-89)

Elastic, single diffractive, and total cross sections

@ 546 and 1800 GeV **Roman Pot Spectrometers**

Roman Pot Detectors

- Scintillation trigger counters
- Wire chamber
- Double-sided silicon strip detector \geq

ARM

Additional Detectors Trackers up to $|\eta| = 7$

Results

- Total cross section
- Elastic cross section
- Single diffraction

Fermilab 20-22 May 2004

 $\sigma^{\text{tot}} \sim S^{\varepsilon}$ $d\sigma/dt \sim \exp[2\alpha' \ln s] \rightarrow shrinking$ forward peak Breakdown of Regge factorization

Total & Elastic Cross Sections

$$f = \Delta y' = \ln s$$

$$f = \sigma_o s^{\varepsilon} = \sigma_o e^{\varepsilon \Delta y'}$$

The exponential rise of σ_{T} is a QCD aspect expected in the parton model

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y}$$

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDF

(Run I-0)

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDF

6

7

QCD Basis for Renormalization

(KG, hep-ph/0205141)

Renormalization removes the s-dependence \rightarrow M²-SCALING

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDF

Experimentally:
KG&JM, PRD 59 (114017) 1999
$$\begin{aligned}
\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\kappa = \frac{g_{IP}}{\beta_{IP}} = 0.17 \pm 0.02, \quad$$

Fermilab 20-22 May 2004

 $\boldsymbol{\prec}$

The Future of QCD: Diffraction @CDF K. Goulianos

Soft Central and Double Gaps

Double Diffraction Dissociation

> One central gap

Double Pomeron Exchange

> Two forward gaps

SDD: Single+Double Diffraction

> One forward + one central gap

Generalized Renormalization

(KG, hep-ph/0205141)

Fermilab 20-22 May 2004

Central & Double-Gap Results

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDF

Soft Gap Survival Probability

Soft Diffraction Conclusions

Experiment:

- > M² scaling
- Non-suppressed double-gap to single-gap ratios

Phenomenology:

- Generalized renormalization
- Obtain Pomeron intercept and tripe-Pomeron coupling from inclusive PDF's and color factors

Soft diffraction is understood ! (?)

Hard Diffraction

- Diffractive Fractions
- Diffractive Structure Function
- Factorization breakdown and restoration
- > DSF from inclusive PDF's
- Hard diffraction conclusions

Diffractive Fractions

The Future of QCD: Diffraction @CDFK. Goulianos

<u>Diffractive Structure F'n</u> $\overline{p} + p \rightarrow \overline{p} + Jet + Jet + X$

• Measure ratio of SD/ND dijet rates as a f'n of $x_{\overline{p}}$

$$x_{\overline{p}} \equiv p_{g,q}/p_{\overline{p}} = \frac{\sum_{i=1}^{2(3)} E_{T}^{i} \cdot e^{-\eta^{i}}}{\sqrt{s}}$$

$$R_{\frac{SD}{ND}}(x_{\overline{p}}) \approx R_0 \cdot x_{\overline{p}}^{-0.45}$$

• In LO-QCD ratio of rates equals ratio of structure fn's

$$F_{jj}(x_{\overline{p}}) = x_{\overline{p}} \left[g(x_{\overline{p}}) + \frac{C_F}{C_A} \sum (q_i(x_{\overline{p}}) + \overline{q}_i(x_{\overline{p}})) \right]$$

SD/ND Rates vs X_p

Breakdown of QCD Factorization

HERA

The clue to understanding the Pomeron
TEVATRON

Restoring Diffractive Factorization

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDF

DSF from Inclusive pdf's (KG)

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDFK. Goulianos21

Pomeron Intercept from H1

H1 Diffractive Effective $\alpha_{IP}(0) \alpha_{IP}(t) = 1 + \varepsilon + \alpha' t$

The Future of QCD: Diffraction @CDF

<u>ξ-dependence: Inclusive vs Dijets</u>

<u>Enery Dependence of F_{JJ}^{D} </u>

Hard Diffraction Conclusions

Diffraction appears to be a low-x exchange subject to color constraints

Summary of Run I Results

SOFT DIFFRACTION

- $> M^2 scaling$
- Non-suppressed double-gap to single-gap ratios

HARD DIFFRACTION

- Flavor-independent SD/ND ratios
- Factorization breakdown and restoration

Universality of gap prob. across soft and hard diffraction

Run II Diffractive Program

- Single Diffraction

 - ξ and Q² dependence of F_{jj}^D
 Process dependence of F^D(W, b, J/ψ,...)
- Double Diffraction
 - > Jet-Gap-Jet: $\Delta \eta^{gap}$ for large fixed $\Delta \eta^{jet}$
- Double Pomeron Exchange
 - F_{ii}^D on p-side vs ξ-pbar

Also:

Exclusive central production

 \blacktriangleright Dijets, χ_c , low mass states, Higgs(!)(?)... Other

Fermilab 20-22 May 2004

K. Goulianos

CDF-II

MiniPlug Calorimeter

About 1500 wavelength shifting fibers of 1 mm dia. are 'strung' through holes drilled in $36x\frac{1}{4}$ " lead plates sandwiched between reflective Al sheets and guided into bunches to be viewed individually by multi-channel photomultipliers.

Artist's View of MiniPlug

Fermilab 20-22 May 2004

Q² dependence of DSF

Fermilab 20-22 May 2004

The Future of QCD: Diffraction @CDF K. Goulianos 34

Merits/Problems/Needs

<u>Merits of CDF Run II diffractive program</u>

□ Measuring ξ with calorimeters → full acceptance
 → overlap rejection
 □ BSC gap triggers → can take data at high luminosities

<u>But:</u>

BSC gap rejects some diffractive events from MP spillover
 Useful rates too low for many processes, e. g. exclusive b-bbar

Need:

- □ Low luminosity runs for calibrations:
 - ξ-roman pot vs ξ-calorimeter
 - BSC gap trigger vs roman pot trigger

<u>Also need:</u>

\$\$\$ to instrument MPs from current 84 to all 256 channels for EM/hadron discrimination and better jet definition

<u>Run II</u>

□ CDF has a comprehensive Run II diffractive program

- □ Modest upgrades & special runs are desirable
 - > Full MiniPlug instrumentation
 - > Low luminosity (~ 10^{30}) runs for calibrations
 - > Data run at 630 GeV

Beyond Run II

Can think of improvements, but of no compelling diffractive physics that cannot be done in Run II