Diffractive dijet production at CDF

Konstantin Goulianos
(for the CDF Collaboration)

The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA

Abstract. We present a CDF measurement of diffractive dijet prodadiiopp collisions at 1.96
TeV at the Fermilab Tevatron Collider using data from angraéed luminosity ot~ 310 pb !
collected by triggering on a high transverse momentum jebincidence with a recoil antiproton
detected in a roman pot spectrometer. We report final refatd-momentum transfer squared
t > —4 Ge\?, antiproton-momentum-loss fraction within 0.03-0.09&gnx of the interacting
parton in the antiproton in the range 0.001-0.1, and jetstrarse energies from 10 to 100 GeV.
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1. INTRODUCTION

We present final results from a CDF measurement of singfeadifve (SD) dijet pro-
duction inpp collisions at,/s= 1.96 TeV at the Fermilab Tevatron Collider using data
collected by triggering on a high transverse momentum jetoimcidence with a re-
coil antiproton detected in a Roman Pot Spectrometer (REISWe consider proton
diffractive dissociationp+ p — p+ Gg+ Xp, characterized by a rapidity gap (region of
pseudorapidity devoid of particles) adjacent to an escapm@nd a final statX, rep-
resenting particles from the dissociation of the proton T2Je rapidity gap, presumed
to be caused by a color-singlet exchange with vacuum quantumbers between the
and the dissociated proton, traditionally referred to as®&won (P) exchange, is related
to &p, the forward momentum loss of the survivipgby Gy = —Inép.

Several diffractive dijet results were obtained by CDF imR{B]-[6]. Among these,
most striking is the observation of a breakdown of QCD fag#iion, expressed as a
suppression by a factor @f(10) of the diffractive structure function (DSF) measured
in dijet production relative to that derived from fits to partdensities measured in
diffractive deep inelastic scattering (DDIS) at the DE&Y collider HERA (see [5]).

The present Run Il diffractive dijet measurement was peréat in order to further
characterize the diffractive structure function my meamsty distributions over a wide

range ot and jet transverse enerdﬁift, namely—t5< 4 Ge\V?and 16 < Q% ~ (E"T‘at)2 <

10* GeV?, and to search for diffractive dips. Below, we present thinmesults of this
measurement and compare them with theoretical expecsation

1 Rapidity,y = 3In Efgt and pseudorapidity; = —Intang, where@ is the polar angle of a particle

with respect to the proton beam-Z direction), are used interchangeably for particles detbat the
calorimeters, since in the kinematic range of interestisdnalysis they are approximately equal.




2. MEASUREMENT

Detector. Figure 1 is a schematic plan view of the detector used in te&ssurement,
showing the main CDF Il central detector and the forward @etecomponents essen-
tial to this measurement. The forward components includemd Pot Spectrometer
(RPS), which measure€s; andtg with resolutionsdéz = 0.001 anddtg = +0.07 Ge\?
at(—tg) ~ 0.05 Ge\?, wheredtg increases withg with a O ,/—t5 dependence.
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FIGURE 1. Schematic plan view of the detector, showing the main detd@DF I1) with tracking
system and calorimeters (central, CCAL; plug, PCAL), amive’d components (Cerenkov Luminosity
Counters, CLC; MiniPlugs, MP; Roman Pot Spectrometer, RBBF are electrostatic beam separators.

Data samples. This analysis is based on data corresponding to an intejjtate
minosity of Z~ 310 pb! collected in 2002—2003. Events were selected online with
a three-level prescaled triggering system accepting RB§eted inclusive and jet-
enriched events by requiring at least one calorimeter toviterEr > 5, 20, or 50 GeV
within || < 3.5. Jets were reconstructed using the midpoint algorithm [7]

The majority of the data used in this analysis were recordidowt RPS tracking
information. For these data, the valueégfwas evaluated from calorimeter information
and is designated &5"-. The {5 was then calibrated againgtobtained from the

RPS,E5PS, using data from runs in which RPS tracking was available.
The following trigger definitions are used for these measands:

e RPS: RPS trigger counters in time withparossing the nominal interaction point;
e J5(J20, J50): jet witIE+et >5 (20, 50) GeV in CCAL or PCAL,;
e RPSJet5 (Jet20, Jet50): RPS trigger in coincidence with J5, (I&0).

3. RESULTS

Figure 2 shows kinematic distributions for SD and ND evedts( eft), the averageg of
the two highesEr jets in the event*, is seen to be centered for ND while shifted to a
higher value for SD events; dnight), the average particle multiplicity in the MiniPlug,
M+ is ~ 9 for ND and peaks at zero for SD events. These results argeeagnt with
expectations from the presence of a rapidity gap adjacehetoutgoingpin SD events.

In Fig. 3, we compare o(left) the mean dijet transverse energy between SD and ND
events, and ofright) thexg; (Bjorkenx) distribution of the ratio of SD/A&)/ND event-



rates for various values QQ2> . (E?)2 over a range of two orders of magnitude. These
plots show that the SD and ND distributions are very similar.
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FIGURE 2. Distributions for SD and ND eventfleft) average) distribution of the two highedr jets;
(right) multiplicity distributions in the MR calorimeter.
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FIGURE 3. (left) Mean dijet transverse energy for SD and ND events normaliagble SD events;
(right) ratios of SD to ND dijet-event rates xg; for various values on2> ~ <E1*->2.

Thet distributions for RPS inclusive and various dijet event plas are shown in Fig. 4
for —t < 1 Ge\~ fitted to two exponential terms, and in Fig. 5 fet < 4 Ge\2. No
significant variations are observed over a wide ragéQ@. For —t < 0.5 Ge\? all
t distributions, both for the inclusive and the hig®?) samples, are compatible with
the expectation from the “soft” Donnachie-Landshoff (DLydel [8]. The rather flat
distributions at large-t shown in Fig. 5 are compatible with a possible existence of an
underlying diffraction minimum aroundt ~ 2.5 Ge\? filled by t-resolution effects.

The above results favor models of hard diffractive productin which the hard
scattering is controlled by the parton-distribution-ftian of the recoil antiproton while
the rapidity-gap formation is governed by a color-neutodl exchange [9]-[12].
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FIGURE 4. (left) t5 distributions for SD RPS data of vario(@?) values within 005 < £5PS< 0.08;
(right) slope parametetts; andb; vs (Q?) of a fit to dNeyents/dt = Nnorm(A1€1t + AxeP2t) with Ay /A; =
0.11 (average over all data subsamples). The RPS-inclusinésmare arbitrarily placed §Q%)=1 Ge\2,
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FIGURE 5. t distributions of two SD event samples foi06 < 5P < 0.08 corrected for RPS ac-
ceptance after background subtraction: RPS inclusivewfich (Q?) ~ 1 Ge\? (circles), and(Q?) ~

900 GeV events (triangles); the curve is the expectation of the Bohie-Landshoff (DL) model [8]
normalized to the RPS inclusive data within the region-bk 0.5 Ge\~.
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