Diffraction for all: from Tevatron to LHC and Beyond

Konstantin Goulianos The Rockefeller University

December 11-15 2006 Valparaiso-Chile

<u>Recent references</u> Diffraction at the Tevatron: CDF results <u>http://pos.sissa.it//archive/conferences/035/016/DIFF2006_016.pdf</u>

Renormalized diffractive parton densities <u>http://pos.sissa.it//archive/conferences/035/044/DIFF2006_044.pdf</u>

Contents

Introduction Elastic and Total Cross Sections Diffraction Exclusive Production

p-p Interactions

<u>Non-diffractive:</u> Color-exchange

Diffractive:

Colorless exchange with vacuum quantum numbers

<mark>rapidity gap</mark>

Incident hadrons acquire color and break apart

Incident hadrons retain their quantum numbers remaining colorless pseudo-DECONFINEMENT

<u>Goal</u>: understand the QCD nature of the diffractive exchange

CONFINEMENT

Elastic Scattering

Diffraction Dissociation

HEP 2006, Chile, Dec 11-16

Diffractive pp Processes

HEP 2006, Chile, Dec 11-16

Diffraction for all

7

Rapidity Gaps in Fireworks

HEP 2006, Chile, Dec 11-16

And the local division of

Diffraction for all

K. Goulianos 8

- - ✓ Fundamental Quantum Mechanics
 - Froissart Unitarity Bound.....σ_τ < C In²s
 - Optical theorem.....σ_T ~Im f(t=0)
 - Dispersion relations......Re f(t=0)~Im f(t=0)

• Is space-time discrete? \rightarrow Measure σ_T and ρ -value at LHC!

- Diffraction Dissociation:.....pp→pX, XgX, pXp, pXgX, ...
 - ✓ Non-perturbative QCD
 - Soft & hard diffraction
 - Factorization
 - Multi-gap diffraction
 - Diffraction in QCD:.....what is the Pomeron?
 - Dark energy?
- - ✓ Discovery channel
 - Diffractive Higgs production at the LHC (?)

Tevatron Experiments

		Info Exp	Roman Pots	EI	σ_{T}	Soft diffraction	Hard diffraction
		E710/811 Scint. Counters	p, pbar	×	×	sd	
		CDF-0	p, pbar	×	×	sd	
		CDF-I	pbar			sd,dd,dpe,sdd	JJ,b,J/ψ,W,JGJ
	(CDF-II	pbar			sd	JJ,W,Z,JGJ Exclusive JJ,γγ,
$\left\{ \begin{array}{c} \\ \end{array} \right.$	-	DO-I					JJ,W,Z,JGJ,
		DO-II	p, pbar	×	×	sd,dpe,	JJ,W,Z,JGJ, Exclusive ???

Elastic, diffractive, and total cross section <u>@ 546 and 1800 GeV</u>

CDF & DO - Run II

ELASTIC AND TOTAL CROSS SECTIONS

@ Tevatron: CDF and E710/811
→ use luminosity independent method ←

$$\sigma_T^2 \sim \frac{1}{L} \frac{1}{1+\rho^2} \frac{dN_{el}}{dt} \bigg|_{t=0} \& \sigma_T \sim \frac{1}{L} (N_{el} + N_{inel})$$
optical theorem
$$\Rightarrow \sigma_T = \frac{16\pi}{1+\rho^2} \left(\frac{dN_{el}}{dt} \bigg|_{t=0} \right) \frac{1}{N_{el} + N_{inel}}$$

Alert:
 background N_{inel} yields small σ_T
 undetected N_{inel} yields large σ_T

$\sigma_{\mathsf{T}} \text{ and } \rho\text{-values from PDG}$

 ρ = ratio of real/imaginary parts of elastic scattering amplitude at t=0

σ_T optical theorem Im f_{el}(t=0) ↓ dispersion relations Re f_{el}(t=0)

N. Khuri and A. Martin: measuring ρ at the LHC tests discreteness of space-time

HEP 2006, Chile, Dec 11-16

Total Cross Sections: Regge fit

HEP 2006, Chile, Dec 11-16

Other Approaches

eg, M. Block, arXiv:hep-ph/0601210 (2006)

➔ fit data using analyticity constraintsM. Block and F. Halzen, Phys. Rev. D 72, 036006

 $\sigma_{tot} = 111.5 \pm 1.2 + 4.1 \text{ mb}$

$$\sigma_{T}$$
 (LHC) = 107.3 ± 1.2 mb

Diffraction for all

LHC:

[PRL 89 201801 (2002)]

TOTEM experiment @ LHC

Total Cross Section, Elastic Scattering, and Diffraction Dissociation

CMS/TOTEM LOI: Prospects for Diffractive and Forward Physics at the LHC

HEP 2006, Chile, Dec 11-16

SOFT DIFFRACTION

Key words:

renormalization

scaling

QCD

multi-gap

Dark energy ???

HEP 2006, Chile, Dec 11-16

A Scaling Law in Diffraction

KG&JM, PRD 59 (1999) 114017

Factorization breaks down so as to ensure M²-scaling!

The QCD Connection

The exponential rise of $\sigma_T(\Delta y')$ is due to the increase of wee partons with $\Delta y'$

(E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$\oint \Phi y = \ln s \longrightarrow$$

$$y$$

$$Im f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y}$$

Total cross section: power law increase versus S

Elastic cross section: forward scattering amplitude

Renormalization removes the s-dependence → SCALING

HEP 2006, Chile, Dec 11-16

<u>Multi-gap Renormalization</u>

(KG, hep-ph/0205141)

Central and Double Gaps @ CDF

Double Diffraction Dissociation

> One central gap

Double Pomeron Exchange

> Two forward gaps

SDD: Single+Double Diffraction

> One forward + one central gap

Central & Double-Gap CDF Results

HEP 2006, Chile, Dec 11-16

Dark Energy

Non-diffractive interactions

Rapidity gaps are formed bymultiplicity fluctuations:

 $P(\Delta y) = e^{-\rho \Delta y}, \quad \rho = \frac{dN_{\text{particles}}}{dy}$

$P(\Delta y)$ is exponentially suppressed

<u>Diffractive interactions</u> Rapidity gaps at t=0 grow with Δy :

 $P(\Delta y)\Big|_{t=0} \sim$

Gravitational repulsion?

HEP 2006, Chile, Dec 11-16

Diffraction for all

e²ε∆y

HARD DIFFRACTION

η

- Diffractive fractions
- Diffractive structure function
 factorization breakdown
- Restoring factorization
- Q² dependence
- t dependence
- Hard diffraction in QCD

JJ, W, b, J/ψ

dN/dŋ

Diffractive Fractions @ CDF

 $\overline{p}p \rightarrow (\cancel{X} + X) + gap$

Fraction: SD/ND ratio at 1800 GeV

	Fraction(%)
W	1.15 (0.55)
JJ	0.75 (0.10)
b	0.62 (0.25)
J/ψ	1.45 (0.25)

All ratios ~ 1% →~ uniform suppression ~ FACTORIZATION !

Diffractive Structure Function: Breakdown of QCD Factorization

 β = momentum fraction of parton in Pomeron

The diffractive structure function at the Tevatron is suppressed by a factor of ~10 relative to expectation from pdf's measured by H1 at HERA

Similar suppression factor as in soft diffraction relative to Regge expectations!

Restoring QCD Factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

Diffractive Structure Function: Q² dependence

HEP 2006, Chile, Dec 11-16

Diffractive Structure Function: t- dependence

Fit d σ /dt to a double exponential: $F=0.9\cdot e^{b_1\cdot t}+0.1\cdot e^{b_2\cdot t}$

- No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < 4,500 GeV² across soft and hard diffraction!

Hard Diffraction in QCD

Derive diffractive from inclusive PDFs and color factors

EXCLUSIVE PRODUCTION

Measure exclusive jj & $\gamma\gamma \rightarrow$

Bialas, Landshoff, Phys.Lett. B 256,540 (1991) Khoze, Martin, Ryskin, Eur. Phys. J. C23, 311 (2002); C25,391 (2002);C26,229 (2002) C. Royon, hep-ph/0308283 B. Cox, A. Pilkington, PRD 72, 094024 (2005) OTHER.

Clean discovery channel

Calibrate predictions for H production rates @ LHC

KMR: σ_H (LHC) ~ 3 fb S/B ~ 1 if Δ M ~ 1 GeV

<u>Search for exclusive dijets:</u> Measure dijet mass fraction

$$R_{jj} = \frac{M_{jj}}{M_{X} (all calorimeters)}$$

Look for signal as $M_{jj} \rightarrow 1$

Search for exclusive $\gamma\gamma$

- ✓ 3 candidate events found
- ✓ 1 (+2/-1) predicted
 from ExHuME MC*
- ✓ background under study
- * See talk by V. Khoze

Exclusive Dijet Signal

R_{JJ}(excl): Data vs MC

Shape of excess of events at high R_{jj} is well described by both models

jj_{excl}: Exclusive Dijet Signal

COMPARISON Inclusive data vs MC @ b/c-jet data vs inclusive

JJ_{excl} : x-section vs $E_{T}(min)$

Comparison with hadron level predictions ExHuME (red) Exclusive DPE in DPEMC (blue)

41

JJ_{excl} : cross section predictions

ExHuME Hadron-Level Differential Exclusive Dijet Cross Section vs Dijet Mass (dotted/red): Default ExHuME prediction

(points): Derived from CDF Run II Preliminary excl. dijet cross sections

Statistical and systematic errors are propagated from measured cross section uncertainties using ExHuME M_{jj} distribution shapes.

HEP 2006, Chile, Dec 11-16

Looking forward @ LHC

TEVATRON - what we have learnt

- $> M^2 scaling$
- Non-suppressed double-gap to single-gap ratios
- Pomeron: composite object made up from underlying pdf's subject to color constraints

LHC - what to do

- \succ Elastic and total cross sections & ρ -value
- High mass (>4 TeV) and multi-gap diffraction
- Exclusive production (FP420 project)
 Reduced bgnd for std Higgs to study properties
 Discovery channel for certain Higgs scenarios