Diffractive and Exclusive Dijets and W/Z at CDF

K. Goulianos The Rockefeller University

Contents

Introduction Diffractive W/Z Exclusive JJ

Introduction Soft and hard diffraction @ CDF

Breakdown of factorization - Run I

HERA & LHC 2008 @ CERN May 26-30 Diffractive and Exclusive Dijets and W/Z at CDFD K. Goulianos

5

Hard diffractive fractions - Run I

Multi-gap diffraction - Run I restoring factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

7

ξ & β dependence of F^{D}_{jj} - Run I

Diffractive structure function - Run II t - dependence

Fit d σ /dt to a double exponential: $F=0.9\cdot e^{b_1\cdot t}+0.1\cdot e^{b_2\cdot t}$

 No diffraction dips
 No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Looks like ...

... the underlying diffractive PDF on a hard scale is similar to the proton PDF except for small differences - presumably due to the requirement of combining with the soft PDF to form a spin 1 color singlet with vacuum quantum numbers.

Diffractive W/Z production

- Diffractive W production probes the quark content of the Pomeron
 - To leading order, the W is produced by a quark in the Pomeron

Production by gluons is suppressed by a factor of α_S, and can be distinguished from quark production by an associated jet

Diffractive W/Z - motivation

- In Run I, by combining diffractive dijet production with diffractive W production we determined the quark/gluon content of the Pomeron ===→
- In Run II we aim at determining the diffractive structure function for a more direct comparison with HERA.
- To accomplish this we use:
 - New forward detectors
 - New methodology
 - More data

Phys Rev Lett **78**, 2698 (1997) Fraction of W events due to SD R^w=[1.15±0.51(stat)±0.20(syst)]% for ξ<0.1 integrated over t

13

The DF II detectors

RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1

The MiniPlugs @ CDF

Diffractive W/Z analysis

Using RPS information:

- No background from gaps due to multiplicity fluctuations
- No gap survival probability systematics
- The RPS provides accurate event-by-event <u>ξ measurement</u>
- **Determine the full kinematics of diffractive W production by** obtaining η_v using the equation:

$$\begin{split} \xi^{\text{RPS}} - \xi^{\text{cal}} &= \frac{E}{\sqrt{S}} e^{-\eta_{v}} \quad \text{where} \quad \xi^{\text{cal}} = \sum_{\text{towers}} \frac{E}{\sqrt{S}} e^{-\eta} \\ \text{This allows the determination of:} \\ & \text{W mass} \\ & \text{X}_{\text{Bj}} \\ & \text{Diffractive structure function} \end{split}$$

W/Z selection requirements		
Standard W/Z selection		
$E_T^e(p_T^{\mu} > 25 \text{ GeV})$	$E_{T}^{e_{1}}(p_{T}^{\mu_{1}} > 25 \text{ GeV})$	
$M_T > 25 \text{ GeV}$	$E_T^{e^2}(p_T^{\mu^2} > 25 \text{ GeV})$	
$40 < M_T^W < 120 \text{ GeV}$	$66 < M^{Z} < 116 \text{ GeV}$	
$ Z_{vtx} < 60 \text{ cm}$	Z _{vtx} < 60 cm	

Diffractive W/Z selection RPS trigger counters - MIP RPS track - $0.03 < \xi < 0.10$, |t| < 1W $\rightarrow 50 < M_W(\xi^{RPS},\xi^{cal}) < 120$ Z $\rightarrow \xi^{cal} < 0.1$

Reconstructed diffractive W mass

Rejection of multiple interaction events

19

Diffractive W/Z results

 R^{W} (0.03 < ξ < 0.10, |t|<1)= [0.97 ± 0.05(stat) ± 0.11(syst)]%

Run I: $\mathbb{R}^{W} = 1.15 \pm 0.55 \%$ for $\xi < 0.1 \rightarrow$ estimate **0.97 \pm 0.47 %** in **0.03 < \xi < 0.10 \& |t| < 1**)

 R^{z} (0.03 < x < 0.10, |t|<1)= [0.85 ± 0.20(stat) ± 0.11(syst)]%

CDF/DØ Comparison – Run I ($\xi < 0.1$)

CDF PRL 78, 2698 (1997)	DØ Phys Lett B 574 , 169 (2003)
R ^w =[1.15±0.51(stat)±0.20(syst)]%	Rw=[5.1±0.51(stat)±0.20(syst)]%
gap acceptance A ^{gap} =0.81	gap acceptance A ^{gap} =(0.21±4)%
uncorrected for A ^{gap} →	uncorrected for Agap-
R ^w =(0.93±0.44)%	R ^w =[0.89+0.19-0.17]%
(A ^{gap} calculated from MC)	R ^z =[1.44+0.61-0.52]%

Stay connected tor results on FD_{w/z}

20

EXCLUSIVE JJ & HIGGS BOSONS

gap

p

 $M_{\rm H}^2 = (p + \bar{p} - p' - \bar{p}')^2$

→∆M~(1-2) GeV

Determine spin of H

D

b-jet

b-jet

gap

Exclusive dijet and Higg production

URL: http://link.aps.org/abstract/PRD/v77/e052004 DOI: 10.1103/PhysRevD.77.052004

The DPE data sample

Kinematic distributions

Exclusive dijet signal

Underlying event

Jet1 vs. Jet2: signal and background regions

Background region

Inclusive DPE ^w/LRG-p data vs. MC

ExHuME ←exclusive MC models→ DPEMC

Shape of excess of events at high ${\rm R}_{\rm jj}$ is well described by both ExHuME & DPEMC

HF suppression vs. inclusive signal

HF suppression

ExHuME vs. DPEMC and vs. data

Exclusive dijet x-section vs. M_{ii}

<u>curve</u>: ExHuME hadron-level exclusive dijet cross sections vs. dijet mass <u>points</u>: derived from CDF excl. dijet x-sections using ExHuME

Stat. and syst. errors are propagated from measured cross section uncertainties using M_{jj} distribution shapes of ExHuME generated data.

Introduction

- diffractive PDF looks like proton PDF
- □ Diffractive W/Z RPS data
 - W diffractive fraction in agreement with Run I
 - W/Z diffractive fractions equal within error
 - New techniques developed to enable extracting the diffractive structure function in W production
- □ Exclusive dijet/(Higgs?) production
 - Results favor ExHuME over DPEMC Phys. Rev. D 77, 052004 (2008)

BACKUP

Measurements w/the MiniPlugs Dynamic Alignment of RPS Detectors E^{T}_{iet} Calibration

Measurements ^w/the MiniPlugs

HERA & LHC 2008 @ CERN May 26-30

Diffractive and Exclusive Dijets and W/Z at CDFD K. Goulianos 35

Dynamic Alignment of RPS Detectors

<u>Method:</u> iteratively adjust the RPS X and Y offsets from the nominal beam axis until a maximum in the b-slope is obtained @ t=0.

E_T^{jet} Calibration

→use RPS information to check jet energy corrections ←

HERA & LHC 2008 @ CERN May 26-30

Diffractive and Exclusive Dijets and W/Z at CDFD K. Goulianos 37

