Predictions of Diffractive and Total Cross Sections at LHC Confirmed by Recent Results

Konstantin Goulianos The Rockefeller University, New York City, USA **Low-X 2014**

YUKAWA INSTITUTE, KYOTO, JAPAN **June 17-21 2014**

Basic and combined different combined different combined different combined different combined different combi
Basic and combined different combined different combined different combined different combined different combi processes and the session of the se
Processes and the session of the se CONTENTS

Diffraction

- \Box SD1 pp \rightarrow p-gap-X
	- $SD2$ p \rightarrow X-gap-p Single Diffraction / Single Dissociation
- \square DD pp \rightarrow X-gap-X Double Diffraction / Double Dissociation
- \Box CD/DPE pp \rightarrow gap-X-gap Cenral Diffraction / Double Pomeron Exchange
- \Box Renormalization \rightarrow unitarization
	- □ RENORM model
- \Box Triple-Pomeron coupling
- □ Total Cross Section
- **□ RENORM predictions Confirmed**

References

- MBR in PYTHIA8 <http://arxiv.org/abs/1205.1446>
- *CMS PAS http://cds.cern.ch/record/1547898/files/FSQ-12-005-pas.pdf*
- DIS13 http://pos.sissa.it/archive/conferences/191/067/DIS%202013_067.pdf
- MPI@LHC 2013 summary: <http://arxiv.org/abs/1306.5413>
- [CTEQ Workshop, "QCD tool for LHC Physics: From 8 to 14 TeV, what is needed and why""](https://www.google.com/search?client=firefox-a&hs=Gy0&rls=org.mozilla:en-US:official&channel=sb&q=CTEQ+Workshop,+%E2%80%9CQCD+tool+for+LHC+Physics:+From+8+to+14+TeV,+what+is+needed+and+why%E2%80%9D%E2%80%9D+FINAL,+14+November,+2013&spell=1&sa=X&ei=b5goU4SyHY2X0gHpvYG4Dg&ved=0CCQQBSgA&biw=1252&bih=541) FINAL, 14 November, 2013

Basic and combined diffraction of the Basic and combined diffractive processes

4-gap diffractive process-Snowmass 2001- **<http://arxiv.org/pdf/hep-ph/0110240>**

Regge theory – values of s_o & *g_{PPP}*?

A complication ... \rightarrow Unitarity!

$$
\left(\frac{d\sigma_{el}}{dt}\right)_{t=0} \sim \left(\frac{s}{s_0}\right)^{2\epsilon}, \ \sigma_t \sim \left(\frac{s}{s_0}\right)^{\epsilon}, \text{ and } \sigma_{sd} \sim \left(\frac{s}{s_0}\right)^{2\epsilon}
$$

 \Box σ_{sd} grows faster than σ_t as *s* increases $*$ **→ unitarity violation at high** *s* (similarly for partial x-sections in impact parameter space)

the unitarity limit is already reached at √*s* ~ 2 TeV !

 \Box need unitarization

 * similarly for (d $\sigma_{\rm el}/{\rm dt})_{\rm t=0}$ w.r.t. $\sigma_{\!t}$ but this is handled differently in RENORM

Single diffraction renormalized - 1

KG → CORFU-2001: http://arxiv.org/abs/hep-ph/0203141

Single diffraction renormalized - 2

$$
\begin{array}{|c|c|}\n\hline\n\text{color} & \text{color} & \text{K} = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}} \approx 0.17 \\
\hline\n\text{Executor} & \text{K} = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, & \text{E} = 0.104 \\
\hline\n\text{KG&JM, PRD 59 (114017) 1999} & & & & \\
\hline\n1 & 1 & 0^2 & 1 & 1\n\end{array}
$$

QCD:
$$
\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18
$$

Single diffraction renormalized - 3

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_o}{16\pi} \sigma_o^{I\!\!P}p\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\n
$$
b = b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_o^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2
$$
\n
$$
N(s, s_o) \equiv \int_{\xi_{\text{min}}}^{\xi_{\text{max}}} d\xi \int_{t=0}^{-\infty} dt f_{I\!\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_o^{\epsilon} \frac{s^{2\epsilon}}{\ln s}
$$
\n
$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\nset to unity\n
$$
\sigma_{sd} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const
$$

M² distribution: data \rightarrow do/dM²|_{t=-0.05} ~ independent of s over 6 orders of magnitude!

Independent of s over 6 orders of magnitude in M2 \rightarrow M² scaling

Factorization breaks down to ensure M² scaling

Scale s₀ and *PPP* coupling

Pomeron flux: interpret as gap probability Set to unity: determines g_{PPP} and s₀ KG, PLB 358 (1995) 379

Pomeron-proton x-section

- Two free parameters: s_o and g_{PPP}
- **Q** Obtain product g_{PPP}•s_o^{ε/2} from σ_{SD}
- Renormalized Pomeron flux determines s_{o}
- Get unique solution for g_{PPP}

Saturation at low Q² and small-x

DD at CDF

SDD at CDF

CD/DPE at CDF

Difractive x-sections

$$
\beta^2(t) = \beta^2(0)F^2(t)
$$

$$
F^{2}(t)=\left[\frac{4m_{p}^{2}-2.8t}{4m_{p}^{2}-t}\left(\frac{1}{1-\frac{t}{0.71}}\right)^{2}\right]^{2}\approx a_{1}e^{b_{1}t}+a_{2}e^{b_{2}t}
$$

 α_1 =0.9, α_2 =0.1, b₁=4.6 GeV⁻², b₂=0.6 GeV⁻², s′=s e^{-∆y}, κ=0.17, κβ²(0)= σ_0 , s $_0$ =1 GeV², σ_0 =2.82 mb or 7.25 GeV⁻²

Total, elastic, and inelastic x-sections

$$
\sigma_{\text{ND}} = (\sigma_{\text{tot}} - \sigma_{\text{el}}) - (2\sigma_{\text{SD}} + \sigma_{\text{DD}} + \sigma_{\text{CD}})
$$

\n
$$
\text{CMG} \text{ [R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Lett. B 389, 176 (1996)]}
$$

\n
$$
\sigma_{\text{tot}}^{p \pm p} = \begin{cases} 16.79s^{0.104} + 60.81s^{-0.32} \mp 31.68s^{-0.54} & \text{for } \sqrt{s} < 1.8\\ \sigma_{\text{tot}}^{\text{CDF}} + \frac{\pi}{s_0} \left[\left(\ln \frac{s}{s_F} \right)^2 - \left(\ln \frac{s^{\text{CDF}}}{s_F} \right)^2 \right] & \text{for } \sqrt{s} \ge 1.8 \end{cases}
$$

\n
$$
\text{KG Moriond 2011, arXiv:1105.1916}
$$

\n
$$
\sqrt{s_{\text{CF}}} = 1.8 \text{ TeV}, \sigma_{\text{tot}}^{\text{CDF}} = 80.03 \pm 2.24 \text{ mb}
$$

\n
$$
\sqrt{s_F} = 22 \text{ GeV} \quad s_0 = 3.7 \pm 1.5 \text{ GeV}^2
$$

 $\sigma_{\rm el}^{}$ ^{p±p} = $\sigma_{\rm tot}$ x($\sigma_{\rm el}/\sigma_{\rm tot}$), with $\sigma_{\rm el}/\sigma_{\rm tot}$ from CMG small extrapol. from 1.8 to 7 and up to 50 TeV)

Use the Froissart formula as a *saturated* cross section

$$
\sigma_t(s > s_F) = \sigma_t(s_F) + \frac{\pi}{m^2} \cdot \ln^2 \frac{s}{s_F}
$$

- This formula should be valid above the knee in σ_{sd} vs. \sqrt{s} at $\sqrt{s_F} = 22$ GeV (Fig. 1) and therefore valid at $\sqrt{s} = 1800 \text{ GeV}.$
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at $\sqrt{s} = 1800$ GeV are negligible, as can \bullet be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$$
\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) \left[\frac{98 \pm 8 \text{ mb at 7 TeV}}{109 \pm 12 \text{ mb at 14 TeV}} \right]
$$
Main error

Reduce the uncertainty in s_0

Saturation glueball?

TOTEM vs PYTHIA8-MBR

SD/DD extrapolation to ξ ≤ 0.05 vs MC model

p_T distr's of MCs vs Pythia8 tuned to MBR

COLUMNS

Mass Regions Low 5.5<MX<10 GeV Med. 32<MX<56 GeV □ High 176<MX<316 GeV

D PYTHIA8-MBR agrees best with reference model and can be trusted to be used in extrapolating to the unmeasured regions.

 ROWS MC Models PYTHIA8-MBR PYTHIA8-4C PYTHIA8-D6C PHOJET QGSJET-II-03(LHC) QGSJET-04(LHC) ← Pythia8 tuned to MBR

Charged mult's vs MC model – 3 mass regions

Pythia8-MBR hadronization tune

 $n_{ave} = \frac{\sigma_{\text{QCD}}}{\sigma_{\text{IPp}}}$ Diffraction: tune SigmaPomP $n_{ave} = \frac{QCD}{Q_{Pn}}$ | Diffraction: QuarkNorm/Power parameter $\begin{array}{r} \n\widehat{\mathbf{B}}_{18}^{20} \\
\widehat{\mathbf{B}}_{18}\n\end{array}$ Best fit to MBR (high multiplicities) sigmaPomP (sigmaPomP=10 (4C default) sigmaPomP=2.82*(M²)^{0.104} sigmaPomP=2.82*(M³)^{0.104}*0.65 PYTHIA8 default $10²$ $10³$ 10 M_{x} $\sigma^\mathsf{Pp}(\mathsf{s})$ expected from Regge phenomenology for s_0 =1 GeV² and DL t-dependence.

Red line: best fit to multiplicity distributions. (in bins of Mx, fits to higher tails only, default pT spectra)

SD and DD x-sections vs theory

KG*: after extrapolation into low ξ from the measured CMS data using MBR model

Monte Carlo algorithm - nesting

SUMMARY

Q Introduction **□ Diffractive cross sections:** basic: SD1,SD2, DD, CD (DPE) combined: multigap x-sections \triangleright ND \rightarrow no diffractive gaps: ❖ this is the only final state to be tuned \Box Monte Carlo strategy for the LHC – "nesting" **derived from ND and QCD color factors**

Thank you for your attention