

Diffraction, saturation, and pp cross-sections at the LHC and beyond

Konstantin Goulianos The Rockefeller University http://physics.rockefeller.edu/dino/myhtml/conference.html

A topical conference on elementary particles, astrophysics, and cosmology

CONTENTS

Q Introduction

- **□** Diffractive cross sections
- \Box The total cross section
- \Box Ratio of pomeron intercept to slope
- **□ Conclusions**

Why study soft physics?

Two reasons: one fundamental / one practical.

fundamental

Diffraction

^σ**Toptical theorem** $Im f_{el} (t=0)$ **dispersion relations Re fel (t=0)**

<u>measure σ_T & ρ-value at LHC</u>:

violation of dispersion relations \rightarrow sign for new physics Bourrely, C., Khuri, N.N., Martin, A.,Soffer, J., Wu, T.T

¾ **saturation** Î ^σ**^T**

¾ **dark energy???**

practical: underlying event, triggers, calibrations

All MCs based on pre-LHC data are inadequate \rightarrow need to build robust soft physics MC simulations

ATLAS: UE data vs MC at 900 GeV

http://www.citeulike.org/user/qitek/article/8363551

ATLAS: UE data vs MC at 7 TeV

http://www.citeulike.org/user/qitek/article/8363551

CMS: observation of Diffraction at 7 TeV

Pre-approved on 11/11/2012

13: CMS inclusive single diffraction observation: data vs. MC.

An example of a beautiful data analysis and of MC inadequacies

Regge theory – values of s_0 & g?

Global fit to $p^{\pm}p$, π^{\pm} , K^{\pm}p x-sections

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. Goulianos 8

^σ^T at LHC from CMG global fit

but Peter Landshoff says…

How well can we predict the total cross section at the LHC? Authors: P V Landshoff

(Submitted on 3 Nov 2008) Abstract: Independently of any theory, the possibility that the large value of the Tevatron cross section claimed by CDF is correct suggests that the total cross section at the LHC may be large. Because of the experimental and theoretical uncertainities, the best prediction is \$125\pm 35\$ mb. arXiv:0811.0260v1 [hep-ph]

The problem is \rightarrow Unitarity!

$$
\left(\frac{d\sigma_{el}}{dt}\right)_{t=0} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}, \quad \sigma_t \sim \left(\frac{s}{s_o}\right)^{\epsilon}, \quad \sigma_{sd} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}
$$

 \Box dσ/dt $\sigma_{\rm sd}$ grows faster than $\sigma_{\rm t}$ as *s* increases **→** unitarity violation at high *s* (similarly for partial x-sections in impact parameter space)

the unitarity limit is already reached at √*s* ~ 2 TeV

100

Diffractive pp/pp Processes

p-p Interactions

Goal: understand the QCD nature of the diffractive exchange

Basic and combined ("nested") diffractive processes

Renormalization \rightarrow the key to diffraction in QCD

Diffractive gaps **definition:** gaps not exponentially suppressed

M² distribution: data \rightarrow do/dM²|_{t=-0.05} ~ independent of s over 6 orders of magnitude!

\rightarrow factorization breaks down to ensure M² scaling

Saturation at low Q² and small-x

Single diffraction renormalized – (1)

CORFU-2001: hep-ph/0203141

EDS 2009: http://arxiv.org/PS_cache/arxiv/pdf/1002/1002.3527v1.pdf

Single diffraction renormalized – (2)

$$
\begin{array}{|c|c|}\n\hline\n\text{color} & \kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}} \approx 0.17 \\
\hline\n\text{Experimentsally:} & \kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\
\hline\n\text{KG&JM, PRD 59 (114017) 1999}\n\hline\n\end{array}
$$

QCD:
$$
\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} \cdot (0.18)
$$

Single diffraction renormalized - (3)

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_o}{16\pi} \sigma_o^{I\!\!P}p\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\n
$$
b = b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_o^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2
$$
\n
$$
N(s, s_o) \equiv \int_{\xi_{\text{min}}}^{\xi_{\text{max}}} d\xi \int_{t=0}^{-\infty} dt f_{I\!\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_o^{\epsilon} \frac{s^{2\epsilon}}{\ln s}
$$
\n
$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\nset to unity\n
$$
\sigma_{sd} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const
$$
\n
$$
\text{determine } s_o
$$

Single diffraction renormalized – (4)

$$
\frac{d^2\sigma}{dt d\Delta y} = N_{gap} \cdot C \cdot F_p^2(t) \cdot \left\{ e^{(\varepsilon + \alpha' t) \Delta y} \right\}^2 \cdot \kappa \cdot \left\{ \sigma_o e^{\varepsilon \Delta y'} \right\}
$$
\n
$$
P_{gap}(\Delta y, t)
$$
\n
$$
N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) d\Delta y dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}
$$
\n
$$
\frac{d^2\sigma}{dt d\Delta y} = C'' \left[e^{\varepsilon(\Delta y - \ln s)} \cdot \ln s \right] e^{(b_0 + 2\alpha' \Delta y)t}
$$
\ngrows slower than s^{\varepsilon}\n
$$
\Rightarrow
$$
 Pumplin bound obeyed at all impact parameters

Scale s_0 and triple-pom coupling

Saturation glueball?

Exclusive $\pi^*\pi^-$

Figure 8: $M_{\pi^+\pi^-}$ spectrum in DIPE at the ISR (Axial Field Spectrometer, R807 [97, 98]). Figure from Ref. $[98]$. **See M.G.Albrow, T.D. Goughlin, J.R. Forshaw, hep-ph>arXiv:1006.1289**

Multigap diffraction

KG, hep-ph/0203141

Rapidity Gaps in Fireworks

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. Goulianos 28

PARKERS

Multigap cross sections

Gap survival probability

- This formula should be valid above the knee in σ_{sd} vs. \sqrt{s} at $\sqrt{s}_F = 22$ GeV (Fig. 1) and therefore valid at $\sqrt{s} = 1800 \text{ GeV}.$
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at $\sqrt{s} = 1800$ GeV are negligible, as can be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$$
\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right)
$$

SUPERBALL MODEL

$$
\frac{98 \pm 8 \text{ mb at 7 TeV}}{109 \pm 12 \text{ mb at 14 TeV}}
$$

σ^{sp} and ratio of α '/ε

PHYSICAL REVIEW D 80, 111901(R) (2009)

Pomeron intercept and slope: A QCD connection

Konstantin Goulianos

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_o}{16\pi} \sigma_o^{p_p} \right] \frac{s^{2\epsilon}}{N(s)} \frac{1}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
\frac{s \to \infty}{\Rightarrow} \left[2\alpha' e^{(\epsilon b_0)/\alpha'} \sigma_o^{p_p} \right] \frac{\ln s^{2\epsilon}}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
\sigma_{pp}^{\text{tot}} / p_p = \sigma_o \cdot e^{\epsilon \Delta \eta}.
$$
\n
$$
\sigma_{sd}^{\infty} = 2\sigma_o^{p_p} \exp\left[\frac{\epsilon b_o}{2\alpha'} \right] = \sigma_s^{p_p}
$$
\n
$$
\sigma_s^{\infty} = \frac{\sigma_s^{\infty}}{N_c^2 - 1} + \frac{f_q^{\infty}}{N_c}
$$
\n
$$
r = \frac{f_g^{\infty}}{r}
$$
\n
$$
r_{\text{pheno}} = 3.2 \pm 0.4 \text{ (GeV/c)}^{-2}
$$
\n
$$
r_{\text{exp}} = 0.25 \text{ (GeV/c)}^{-2} / 0.08 = 3.13 \text{ (GeV/c)}^{-2}
$$

Monte Carlo Strategy for the LHC

^σ**T**

 $Im f_{el}$ ($t=0$)

optical theorem

dispersion relations

MONTE CARLO STRATEGY

- \Box σ ^T \rightarrow from SUPERBALL model
- **Q** optical theorem \rightarrow Im f_{el}(t=0)
- **Q** dispersion relations \rightarrow Re f_{el}(t=0)
- \Box differential $\sigma^{SD} \rightarrow$ from RENORM $Re f_{el}(t=0)$
- **□ use nested pp final states for**
- pp collisions at the *IP*-*p* sub-energy √s'

Strategy similar to that employed in the MBR (Minimum Bias Rockefeller) MC used in CDF based on multiplicities from: K. Goulianos, Phys. Lett. B 193 (1987) 151 pp

"A new statistical description of hardonic and e+e[−] multiplicity distributions "

Dijets in γp at HERA from RENORM

K. Goulianos, POS (DIFF2006) 055 (p. 8)

Dark Energy

Non-diffractive interactions

Rapidity gaps are formed by multiplicity fluctuations:

dy dN $P(\Delta y) = e^{-\rho \Delta y}$, $\rho = -\frac{1}{2}$

P(Δy) is exponentially suppressed

Rapidity gaps at t=0 grow with ^Δy: Diffractive interactions

Ay ≈ −ln ζ = ln s − ln *M*

 $\sim {\rm e}^{2\epsilon \Delta {\rm y}}$

2

2ε: negative particle density!

 $P(\Delta y)\big|_{t=0}$

Gravitational repulsion?

SUMMARY

 \square Introduction **□** Diffractive cross sections \square The total cross section \square Ratio of pomeron intercept to slope □ Monte Carlo strategy for the LHC □ Dark energy (?)

RISING X-SECTIONS IN PARTON MODEL

Emission spacing controlled by α -strong

 \blacktriangleright $\sigma_{\textrm{T}}$: power law rise with energy

(see E. Levin, An Introduction to Pomerons,Preprint DESY 98-120)

 $\boldsymbol{\alpha}$ ' reflects the size of the emitted cluster,

which is controlled by 1 / $\alpha_{\mathtt{s}}^{}$ and thereby is related to ε

$$
\phi \longrightarrow \Delta y = \ln s
$$
\n
$$
\boxed{\text{Im } f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t) \Delta y}}
$$
\n
$$
\boxed{\text{as} \text{sum linear } t \text{-dependence}}
$$

Forward elastic scattering amplitude

Diffractive dijets @ Tevatron

p
\n
$$
\overline{p}
$$

\n \overline{p}
\n $\overline{p$

FDJJ(ξ,β,Q2) @ Tevatron

SD/ND dijet ratio vs. x_{Bi}@ CDF

10-310-210-1110-310 x (antiproton) -210-1 $\tilde{\mathsf{R}}(\mathsf{x})$ $\beta = 0.5$ ×1×2 \times 2 2 $\times 2^3$ $\times 2^4$ $\times 2^5$ <ξ> = 0.04 0.05 0.06 0.07 0.08 0.09 $Δξ =$ $E_T^{\text{Jet1,2}} > 7$ GeV $|t| < 1.0$ GeV² stat. errors only $R(x) = \frac{F_{jj}^{SD}(x)}{F_{jj}^{ND}(x)}$ 10 $\frac{1}{2} \times 2^3 \rightarrow 2^3 \rightarrow 2^4 \$ CDF Run I

 $0.035 < \xi < 0.095$ Flat ξ dependence for $\beta \cdot 0.5$

$$
R(x) = x^{-0.45}
$$

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what conditions?)

Results favor color reorganization

Vector meson production

Dijets in γp at HERA - 2008

□ 20-50 % apparent rise when E_T ^{jet} 5→10 GeV \rightarrow due to suppression at low E_T^{jet} !!!

QCD factorisation is a set of \mathbf{F} **→ same suppression for direct and resolved processes** \square the reorganization diagram predicts: \rightarrow suppression at low Z_{IP}^{jets}, since larger Δη is available for particles

EXCLUSIVE HIGGS PRODUCTION

see, e.g., http://arxiv.org/abs/0806.0302

Exclusive Dijet and Higgs Production

Phys. Rev. D 77, 052004

Exclusive Dijet x-section vs MC

left: the data favor ExHuME (updated DPEMC agrees now with data) right: points derived from CDF excl. di-jet x-sections using ExHuME \rightarrow predictions for Higgs production should be within factor of 2

