

Diffraction, saturation, and pp cross-sections at the LHC and beyond

Konstantin Goulianos The Rockefeller University http://physics.rockefeller.edu/dino/myhtml/conference.html

A topical conference on elementary particles, astrophysics, and cosmology

CONTENTS

□ Introduction

- □ Diffractive cross sections
- □ The total cross section
- Ratio of pomeron intercept to slope
- Conclusions

Why study soft physics?

Two reasons: one fundamental / one practical.

🖵 fundamental

Diffraction

 σ_{T} \uparrow optical theorem Im $f_{el}(t=0)$ \uparrow dispersion relations Re $f_{el}(t=0)$

measure $\sigma_T \& \rho$ -value at LHC:

violation of dispersion relations → sign for new physics Bourrely, C., Khuri, N.N., Martin, A.,Soffer, J., Wu, T.T

> saturation $\rightarrow \sigma_T$

> dark energy???

□ *practical*: underlying event, triggers, calibrations

All MCs based on pre-LHC data are inadequate
 → need to build robust soft physics MC simulations

ATLAS: UE data vs MC at 900 GeV

http://www.citeulike.org/user/qitek/article/8363551

ATLAS: UE data vs MC at 7 TeV

http://www.citeulike.org/user/qitek/article/8363551

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. Goulianos 5

CMS: observation of Diffraction at 7 TeV

Pre-approved on 11/11/2012

13: CMS inclusive single diffraction observation: data vs. MC.

An example of a beautiful data analysis and of MC inadequacies

Regge theory – values of s_o & g?

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. Goulianos

7

Global fit to $p^{\pm}p$, π^{\pm} , K[±]p x-sections

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. Goulianos 8

σ^{T} at LHC from CMG global fit

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. (

but Peter Landshoff says...

How well can we predict the total cross section at the LHC? Authors: P V Landshoff

(Submitted on 3 Nov 2008) arXiv:0811.0260v1 [hep-ph] Abstract: Independently of any theory, the possibility that the large value of the Tevatron cross section claimed by CDF is correct suggests that the total cross section at the LHC may be large. Because of the experimental and theoretical uncertainities, the best prediction is \$125\pm 35\$ mb.

The problem is \rightarrow Unitarity!

$$\left(\frac{d\sigma_{el}}{dt}\right)_{t=0} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}, \ \sigma_t \sim \left(\frac{s}{s_o}\right)^{\epsilon}, \ \sigma_{sd} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}$$

dσ/dt σ_{sd} grows faster than σ_t as s increases
 → unitarity violation at high s
 (similarly for partial x-sections in impact parameter space)

 \Box the unitarity limit is already reached at $\sqrt{s} \sim 2$ TeV

100

Diffractive pp/pp Processes

p-p Interactions

Goal: understand the QCD nature of the diffractive exchange

Basic and combined ("nested") diffractive processes

Renormalization The key to diffraction in QCD

Diffractive gaps definition: gaps not exponentially suppressed

M² distribution: data → d_{\sigma/dM²|_{t=-0.05} ~ independent of s over 6 orders of magnitude!}

\rightarrow factorization breaks down to ensure M² scaling

Saturation at low Q² and small-x

Single diffraction renormalized – (1)

CORFU-2001: hep-ph/0203141

EDS 2009: http://arxiv.org/PS_cache/arxiv/pdf/1002/1002.3527v1.pdf

Single diffraction renormalized – (2)

color
factor
$$\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}(0)} \approx 0.17$$

Experimentally: KG&JM, PRD 59 (114017) 1999

$$\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104$$

QCD:
$$\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18$$

Single diffraction renormalized - (3)

$$\begin{split} \frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} &= \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{I\!Pp}\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}} \\ b &= b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_o^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2 \\ \overline{N(s, s_o)} &\equiv \int_{\xi_{\min}}^{\xi_{\max}} d\xi \int_{t=0}^{-\infty} dt f_{I\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_o^{\epsilon} \frac{s^{2\epsilon}}{\ln s} \\ \frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \frac{e^{bt}}{(M^2)^{1+\epsilon}} \\ \overline{\sigma_{sd}} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const \end{split}$$

Single diffraction renormalized – (4)

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = N_{gap} \cdot \underbrace{C \cdot F_{p}^{2}(t) \cdot \left\{e^{(\varepsilon + \alpha' t)\Delta y}\right\}^{2}}_{P_{gap}(\Delta y, t)} \cdot \kappa \cdot \left\{\sigma_{o} \ e^{\varepsilon \Delta y'}\right\}$$

$$N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) \ d\Delta y \ dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}$$

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = C'' \left[e^{\varepsilon(\Delta y - \ln s)} \cdot \ln s\right] e^{(b_{0} + 2\alpha'\Delta y)t}$$
grows slower than s^{ε}

$$\Rightarrow \text{ Pumplin bound obeyed at all impact parameters}$$

Scale s_o and triple-pom coupling

Saturation glueball?

Exclusive $\pi^+\pi^-$

Figure 8: $M_{\pi^+\pi^-}$ spectrum in DIPE at the ISR (Axial Field Spectrometer, R807 [97, 98]). Figure from Ref. [98]. See M.G.Albrow, T.D. Goughlin, J.R. Forshaw, hep-ph>arXiv:1006.1289

Multigap diffraction

KG, hep-ph/0203141

Rapidity Gaps in Fireworks

MIAMI 2010, Dec 14 -19 Diffraction, saturation, and pp cross sections at the LHC and beyond K. Goulianos 28

NAME OF COMPANY

Multigap cross sections

Gap survival probability

- This formula should be valid above the knee in σ_{sd} vs. √s at √s_F = 22 GeV (Fig. 1) and therefore valid at √s = 1800 GeV.
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at √s = 1800 GeV are negligible, as can be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$$\sigma_t^{\rm LHC} = \sigma_t^{\rm CDF} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\rm LHC}}{s_F} - \ln^2 \frac{s^{\rm CDF}}{s_F} \right)$$

SUPERBALL MODEL

σ^{SD} and ratio of α'/ϵ

PHYSICAL REVIEW D 80, 111901(R) (2009)

Pomeron intercept and slope: A QCD connection

Konstantin Goulianos

$$\frac{d^2 \sigma_{\rm sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{\rm pp}\right] \frac{s^{2\epsilon}}{N(s)} \frac{1}{(M^2)^{1+\epsilon}} e^{bt}$$

$$\stackrel{s \to \infty}{\Rightarrow} \left[2\alpha' e^{(\epsilon b_0)/\alpha'} \sigma_{\circ}^{\rm pp}\right] \frac{\ln s^{2\epsilon}}{(M^2)^{1+\epsilon}} e^{bt}$$

$$\tau_{pp/\bar{p}p}^{\rm tot} = \sigma_{\circ} \cdot e^{\epsilon \Delta \eta}.$$

$$r = \frac{\alpha'}{\epsilon} = -\left[16m_{\pi}^2 \ln(2\kappa)\right]^{-1}$$

$$r_{pheno} = 3.2 \pm 0.4 \ ({\rm GeV}/c)^{-2}$$

$$r_{exp} = \frac{0.25 \ ({\rm GeV}/c)^{-2}/0.08 = 3.13 \ ({\rm GeV}/c)^{-2}$$

 $\sigma^{\infty}_{
m sd}$

$$r_{\rm exp} = 0.25 \; ({\rm GeV}/c)^{-2}/0.08 =$$

3.13 $({\rm GeV}/c)^{-2}$

Diffraction, saturation, and pp cross sections at the LHC and beyond MIAMI 2010, Dec 14 -19 K. Goulianos 32

Monte Carlo Strategy for the LHC

σ

Im f_{el}(t=0)

optical theorem

dispersion relations

MONTE CARLO STRATEGY

- $\Box \sigma^{\mathsf{T}} \rightarrow \text{from SUPERBALL model}$
- □ optical theorem \rightarrow Im f_{el}(t=0)
- □ dispersion relations \rightarrow Re f_{el}(t=0)
- □ differential $\sigma^{SD} \rightarrow$ from RENORM \downarrow dispersion of the states for Ref_{el}(t=0)
- □ use *nested* pp final states for
- pp collisions at the *IP-p* sub-energy \sqrt{s}

Strategy similar to that employed in the MBR (Minimum Bias Rockefeller) MC used in CDF based on multiplicities from: *K. Goulianos, Phys. Lett. B* 193 (1987) 151 pp "A new statistical description of hardonic and e⁺e⁻ multiplicity distributions "

Dijets in yp at HERA from RENORM

K. Goulianos, POS (DIFF2006) 055 (p. 8)

Dark Energy

Non-diffractive interactions

Rapidity gaps are formed bymultiplicity fluctuations:

 $P(\Delta y) = e^{-\rho \Delta y}, \quad \rho = \frac{dN_{\text{particles}}}{dy}$

$P(\Delta y)$ is exponentially suppressed

<u>Diffractive interactions</u> Rapidity gaps at t=0 grow with ∆y:

e^{2ε∆y}

28: negative particle density!

 $P(\Delta y)\Big|_{t=0}$

Gravitational repulsion?

SUMMARY

Introduction
Diffractive cross sections
The total cross section
Ratio of pomeron intercept to slope
Monte Carlo strategy for the LHC
Dark energy (?)

RISING X-SECTIONS IN PARTON MODEL

$$for the formula for the second state of the$$

Emission spacing controlled by $\alpha\text{-strong}$

 $\rightarrow \sigma_{\rm T}$: power law rise with energy

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

 α' reflects the size of the emitted cluster,

which is controlled by 1 / $\alpha_{\rm s}$ and thereby is related to ϵ

$$f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y} \xrightarrow{y}$$
 assume linear t-dependence

Forward elastic scattering amplitude

Diffractive dijets @ Tevatron

$$p \xrightarrow{jet}_{jet}_{jet}$$

$$p \xrightarrow{p}_{reorganize}$$

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

$F^{D}_{JJ}(\xi,\beta,Q^{2})$ @ Tevatron

SD/ND dijet ratio vs. x_{Bj}@ CDF

CDF Run I $\tilde{R}(x)$ 0.04 0.05 0.06 0.07 0.08 0.09 $\Delta \xi =$ 0.01 $E_{T}^{Jet1,2} > 7 \text{ GeV}$ $|t| < 1.0 \text{ GeV}^2$ 10 stat. errors only $\beta = 0.5$ $R(x) = \frac{1}{1}$ 10 10 -3 -2 10 10 10 x (antiproton)

0.035 < ξ < 0.095 Flat ξ dependence for β < 0.5

$$R(x) = x^{-0.45}$$

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what conditions?)

Results favor color reorganization

Vector meson production

Dijets in yp at HERA - 2008

■ 20-50 % apparent rise when $E_T^{jet} 5 \rightarrow 10$ GeV → due to suppression at low $E_T^{jet} !!!$

Dijets in γp at HERA – 2007 Dijets in γp Direct vs. resolved

□ the reorganization diagram predicts:
 → suppression at low Z_{IP}^{jets}, since larger Δη is available for particles
 → same suppression for direct and resolved processes

EXCLUSIVE HIGGS PRODUCTION

see, e.g., http://arxiv.org/abs/0806.0302

Exclusive Dijet and Higgs Production

Phys. Rev. D 77, 052004

Exclusive Dijet x-section vs MC

<u>left:</u> the data favor ExHuME (updated DPEMC agrees now with data)
 <u>right</u>: points derived from CDF excl. di-jet x-sections using ExHuME
 > predictions for Higgs production should be within factor of 2

