QCD ASPECTS OF CDF RESULTS ON DIFFRACTION QCD 2004

7-11 June 2004 L'Institute Astrophysique de Paris Paris, France

Konstantin Goulianos The Rockefeller University

- CDF results
- Comparison with HERA
- QCD aspects

Forty Years of Diffraction

- 4 1960's Good and Walker BNL: first observation
- 1970's
 Fermilab fixed target, ISR, SPS
 Regge factorization works
 KG, Phys. Rep. 101, 169 (1983)
- 1980's
 UA8: diff. dijets ⇒ <u>hard diffraction</u>
- 1990's Tevatron: Regge factorization breakdown Tev, HERA: QCD factorization breakdown

QCD 2004, 7-11 2004, Paris

QCD 2004, 7-11 2004, Paris

Total & Elastic Cross Sections

$$f = \Delta y' = \ln s$$

$$y$$

$$y$$

$$\sigma_T(s) = \sigma_o \ s^{\varepsilon} = \sigma_o \ e^{\varepsilon \Delta y'}$$

The exponential rise of σ_{T} is a QCD aspect expected in the parton model

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$\oint \Phi = \ln s \longrightarrow y$$

$$Im f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y}$$

QCD 2004, 7-11 2004, Paris

QCD Aspects of CDF Results on Diffraction

(Run I-0)

QCD 2004, 7-11 2004, Paris QCD Aspects of CDF Results on Diffraction K. Goulianos

6

A Scaling Law in Diffraction

KG&JM, PRD 59 (1999) 114017

10⁶

10 d²σ∕dtdM²l_{t=-0.05} (mb GeV⁻⁴) Factorization breaks std. and renorm. $(0.01 < \xi < 0.03)$ • 14 GeV flux fits $(0.01 < \xi < 0.03)$ □ 20 GeV down in favor of ▲ 546 GeV $(0.005 < \xi < 0.03)$ \bigcirc 1800 GeV (0.003 < ξ < 0.03) M²-scaling 10 1 $\Delta \equiv \mathcal{E}$ $(M^2)^{1+\Delta}$ 10⁻² $\Delta = 0.05$ renormalization 546 GeV std. $\Delta = 0.15$ flux prediction 1800 GeV std. 10 flux prediction 2ε $d\sigma$ renorm. flux ∞ 10 prediction 10 104 10^{3} 10^{5} 10^{2} 10 M^2 (GeV²)

Central and Double Gaps

Double Diffraction Dissociation

> One central gap

Double Pomeron Exchange

> Two forward gaps

SDD: Single+Double Diffraction

> One forward + one central gap

QCD Basis of Renormalization (KG, hep-ph/0205141)

2 independent variables: $t, \Delta y$

$$\frac{d^2\sigma}{dt \ d\Delta y} = C \bullet F_p^2(t_1) \bullet \left\{ e^{(\varepsilon + \alpha' t)\Delta y} \right\}^2 \bullet \kappa \bullet \left\{ \sigma_o \ e^{\varepsilon \Delta y'} \right\}$$

Renormalization removes the s-dependence --> SCALING

QCD 2004, 7-11 2004, Paris QCD Aspects of CDF Results on Diffraction K. Go

Gap probability

 $2\varepsilon\Delta y$

 $\frac{\text{color}}{\text{factor}} \kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-P-P}(0)} \approx 0.17$

 $\int_{\Delta y_{\min}}^{\Delta y=\ln s} s^{2\varepsilon \Delta y} \approx s^{2\varepsilon}$

The Factors K and E

QCD 2004, 7-11 2004, Paris

Generalized Renormalization

(KG, hep-ph/0205141)

QCD 2004, 7-11 2004, Paris

Central & Double-Gap Results

QCD 2004, 7-11 2004, Paris

Soft Gap Survival Probability

Soft Diffraction Conclusions

Experiment:

- > M² scaling
- Non-suppressed double-gap to single-gap ratios

Phenomenology:

- Generalized renormalization
- Obtain Pomeron intercept and tripe-Pomeron coupling from inclusive PDF's and color factors

Diffractive Fractions

QCD 2004, 7-11 2004, Paris QCD Aspects of CDF Results on Diffraction K. Goulianos

17

Difftactive Structure F'n @CDF

$$\overline{p} + p \to \overline{p} + Jet + Jet + X$$

• Measure ratio of SD/ND dijet rates as a f'n of $x_{\overline{p}}$

$$x_{\overline{p}} \equiv p_{g,q}/p_{\overline{p}} = \frac{\sum_{i=1}^{2(3)} E_{T}^{i} \cdot e^{-\eta^{i}}}{\sqrt{s}}$$

$$R_{\frac{SD}{ND}}(x_{\overline{p}}) \approx R_0 \cdot x_{\overline{p}}^{-0.45}$$

 In LO-QCD ratio of rates equals ratio of structure fn's

$$F_{jj}(x_{\overline{p}}) = x_{\overline{p}} \left[g(x_{\overline{p}}) + \frac{C_F}{C_A} \sum \left(q_i(x_{\overline{p}}) + \overline{q}_i(x_{\overline{p}}) \right) \right]$$

SD/ND Rates vs $X_{\overline{p}}$

QCD 2004, 7-11 2004, Paris

Breakdown of QCD Factorization

HERA

The clue to understanding the Pomeron

TEVATRON

Restoring Diffractive Factorization

QCD 2004, 7-11 2004, Paris

Q² dependence of DSF

21

<u>Diffractive Structure Function</u> <u>from Inclusive pdf's (KG)</u>

Pomeron Intercept from H1

H1 Diffractive Effective $\alpha_{IP}(0) \alpha_{IP}(t) = 1 + \varepsilon + \alpha' t$

<u>ξ-dependence: Inclusive vs Dijets</u>

QCD 2004, 7-11 2004, Paris QCD

Gap Between Jets

SOFT DIFFRACTION

- $> M^2 scaling$
- Non-suppressed double-gap to single-gap ratios

HARD DIFFRACTION

- Flavor-independent SD/ND ratio
- > Little or no Q²-dependence in SD/ND ratio

Universality of gap prob. across soft and hard diffraction
Pomeron evolves similarly to proton

Diffraction appears to be a low-x partonic exchange subject to color constraints