Twenty Years of Diffraction at the Tevatron

K. Goulianos The Rockefeller University EDS 2005 15-20 May 2005 Chateau de Blois, France

http://physics.rockefeller.edu/dino/my.html

	F Tw	<u>Forty Years of Diffraction</u> Twenty Years at the Tevatron	
4	1960's	BNL: first observation of pp -> pX	
4	1970's	Fermilab fixed target, ISR, SPS → Regge theory & factorization	
(<u>Review</u> : KG, Phys. Rep. 101 (1983) 169	
4	1980's	UA8: diffractive dijets ⇒ <u>hard diffraction</u>	
{₊	1990's	Tev Run-I: Regge factorization breakdown Tev vs HERA: QCD factorization breakdown	
4	21st C	<u>Multigap diffraction</u> : restoration of factorization Ideal for diffractive studies @ LHC	

CDF Run 1-0 (1988-89) Elastic, single diffractive, and total cross sections @ 546 and 1800 GeV Scintillator -Silicon (xv readout) **Roman Pot Spectrometers** Chamber Delay line ARM 0 S1 S2 Beam axis ARM Roman Pot Detectors Scintillation trigger counters Additional Detectors Wire chamber Trackers up to $|\eta| = 7$ Double-sided silicon strip detector \geq Results

- > Total cross section
- Elastic cross section
- Single diffraction

 $\sigma^{tot} \sim S^{\varepsilon}$ d σ /dt ~ exp[2 α ' lns] \rightarrow shrinking forward peak Breakdown of Regge factorization

Run 1-0 results in perspective

Total Single Diffractive x-Section

CDF Run 1 (1992-1995)

Run-IC

Run-IA,B

6

Diffraction@CDF in Run I 16 papers

<u>Fraction:</u> SD/ND ratio at 1800 GeV

Hd	Fraction(%)
W	1.15 (0.55)
JJ	0.75 (0.10)
b	0.62 (0.25)
J/ψ	1.45 (0.25)

All ratios ~ 1% →~ uniform suppression ~ FACTORIZATION

<u>Tevatron vs HERA:</u> Breakdown of QCD Factorization

Multigap Diffraction (KG, hep-ph/0205141)

Elastic and Total Cross Sections

QCD expectations

$$f = \Delta y' = \ln s$$

$$y$$

$$\sigma_T(s) = \sigma_o s^{\varepsilon} = \sigma_o e^{\varepsilon \Delta y'}$$

The exponential rise of $\sigma_T(\Delta y')$ is due to the increase of wee partons with $\Delta y'$

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$\oint \Phi y = \ln s \longrightarrow y$$

$$Im f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y}$$

Total cross section: power law rise with energy

Elastic cross section: forward scattering amplitude

Single Diffraction

Gap probability MUST be normalized to unity!

The Factors K and E

Multigap Cross Sections

Central and Two-Gap CDF Results

Gap Survival Probability

Diffractive DIS @ HERA Factorization holds: J. Collins

Inclusive vs Diffractive DIS

KG, "Diffraction: a New Approach," J.Phys.G26:716-720,2000 e-Print Archive: hep-ph/0001092

Diffractive Dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\mathcal{E}_{soft}}} \cdot F(x/\xi, Q^{2})$$

$F^{D}_{JJ}(\xi,\beta,Q^{2})$ @ Tevatron

SD/ND Dijet Ratio vs x_{Bj}@ CDF

Flat ξ dependence

$$R(x) = x^{-0.45}$$

Restoring Factorization @ Tevatron

$$R_{\rm TEV}^{\rm J-G-J}(s')\approx 1\%/$$

$$R_{LHC}^{J-G-J}(s') = \frac{R_{TEV}^{J-G-J}}{S} \approx \frac{1\%}{0.2} \approx 5\%$$

Is the diffractive exchange BFKL-like or simply a color rearrangement?

Run 2 CDF Diffractive Program

Single Diffraction

- > ξ and Q² dependence of F_{jj}^{D} > Process dependence of $F^{D}(W, J/\psi)$
- Double Diffraction
 - > Jet-Gap-Jet: $\Delta \eta^{gap}$ for fixed large $\Delta \eta^{jet}$
- Double Pomeron Exchange
 - F_{ii}^D on p-side vs ξ-pbar
- Also:
- Exclusive central production
 - Dijets, χ_c
- Other
 - Tev4LHC issues

Summary

- Diffraction is a low-x QCD phenomenon subject to color constraints.
- Multigap processes offer the opportunity to study diffraction without complications arising from rapidity gap survival issues.
- Regularities observed in Run 1 at the Tevatron and in results obtained at HERA paint a picture of the Pomeron as a composite object constructed from the underlying inclusive pdf's of the (anti)proton. This picture could be further clarified and advanced to a theory by studies at the LHC.