### Diffraction at CDF

Hamburg, Germany, 21-25 May 2007

The Rockefeller University
(for the CDF collaboration)



# Contents

- > Introduction
- > Diffractive structure function
- > Exclusive Production

# p-p Interactions

Non-diffractive: Color-exchange

Diffractive:

Colorless exchange with vacuum quantum numbers

rapidity gap

Incident hadrons acquire color and break apart





Incident hadrons retain their quantum numbers remaining colorless

Goal: understand the QCD nature of the diffractive exchange







### Diffraction at CDF





# CDF Run-IØ (1988-89)

Elastic, diffractive, and total cross sections @ 546 and 1800 GeV





### Total SD x-section

$$\frac{d^2\sigma_{SD}}{dtd\xi} = (f_{IP/p}(t,\xi)) \circ \sigma_{IP-\overline{p}}(M_X^2)$$

 $\sigma_{SD} \sim s^{2\varepsilon}$ 

- Pomeron flux 100
- \* Regge theory  $\sigma_{SD}$  exceeds  $\sigma_{T}$  at  $\sqrt{s} \approx 2 \text{ TeV}$ .
- Renormalization
   Pomeron flux integral (re)normalized to unity

KG, PLB 358 (1995) 379

$$\int_{\xi_{min}}^{0.1} \int_{t=-\infty}^{0} f_{IP/p}(t,\xi) \, d\xi \, dt = 1$$



# A Scaling Law in Diffraction

#### KG&JM, PRD 59 (1999) 114017



→ Independent of S over 6 orders of magnitude in M<sup>2</sup>!



Factorization breaks down so as to ensure M<sup>2</sup>-scaling!

# CDF Run-I

### Run-IC

### Run-IA,B



# Central and Multigap Diffraction



- **□ Double Diffraction Dissociation** 
  - **≻** One central gap



- **□ Double Pomeron Exchange** 
  - > Two forward gaps



- **SDD: Single+Double Diffraction** 
  - ➤ One forward gap+ one central gap

Rate for second diffractive gap is not suppressed!

## Diffractive Fractions

$$\overline{p}p \rightarrow (/// + X) + gap$$

Fraction: SD/ND ratio at 1800 GeV

|             | Fraction(%) |
|-------------|-------------|
| W           | 1.15 (0.55) |
| JJ          | 0.75 (0.10) |
| Ь           | 0.62 (0.25) |
| <b>J/</b> ψ | 1.45 (0.25) |

All ratios ~ 1%

→ ~ uniform suppression
 ~ FACTORIZATION!

### Diffractive non/Factorization



The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

# Run II results

- > CDF-II detectors
- > Diffractive structure function
- > Exclusive Production

#### CD-II Detectors 2m Roman Pots ROMAN POT DETECTORS 56m to CDF Acceptance 0.02<ξ<0.1 0<|t|<2 GeV BEAM SHOWER COUNTERS: Dipoles Used to reject ND events **BSC** 5.5<|n|<7.5 MiniPlug 3.5<|n|<5.1 CLC 3.7<|11<4.7 Central Plug MiniPlug **BSC** MINIPLUG CALORIMETER



### DIFFRACTIVE STRUCTURE FUNCTION



Systematic uncertainties due to energy scale and resolution cancel out in the ratio

# Diffractive Dijet Signal

- Bulk of data taken with RPS trigger but no RPS tracking
- Extract ξ from calorimeter information
- Calibrate calorimetric  $\xi$  using limited sample of RPS tracking data
- Subtract overlap background using a rescaled dijet event sample
- Verify diffractive  $\xi$  range by comparing  $\xi^{RPS}$  with  $\xi^{CAL}$



$$\xi^{CAL} = \frac{\sum_{\text{all towers}} E_T \ e^{-\eta}}{\sqrt{s}}$$

Overlap events: mainly ND dijets plus SD low  $\xi$  RPS trigger

### Alignment of RPS using Data



### maximize the |t|-slope ⇒ determine X and Y offsets







# ξ<sup>CAL</sup> Calibration



# Dijet Properties









# E<sub>T</sub> distributions



### Diffractive Structure Function: Q<sup>2</sup> dependence



Small  $Q^2$  dependence in region 100 <  $Q^2$  < 10,000 GeV<sup>2</sup>  $\Rightarrow$  Pomeron evolves as the proton!

# Diffractive Structure Function: t- dependence





Fit  $d\sigma/dt$  to a double exponential:

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

- No diffraction dips
- No Q2 dependence in slope from inclusive to Q<sup>2</sup>~10<sup>4</sup> GeV<sup>2</sup>

Same slope over entire region of 0 < Q<sup>2</sup> < 4,500 GeV<sup>2</sup> across soft and hard diffraction!

# Hard Diffraction in QCD





### EXCLUSIVE PRODUCTION

Measure exclusive jj &  $\gamma\gamma$ 





**→** 

Calibrate predictions for H production rates @ LHC



Bialas, Landshoff,
Phys.Lett. B 256,540 (1991)
Khoze, Martin, Ryskin,
Eur. Phys. J. C23, 311 (2002);
C25,391 (2002);C26,229 (2002)
C. Royon, hep-ph/0308283
B. Cox, A. Pilkington,
PRD 72, 094024 (2005)
OTHER......

KMR:  $\sigma_H(LHC) \sim 3 \text{ fb}$ S/B ~ 1 if  $\Delta M \sim 1 \text{ GeV}$ 

#### Discovery channel

#### Search for exclusive dijets: Measure dijet mass fraction

$$R_{jj} = \frac{M_{jj}}{M_{X}(all calorimeters)}$$

Look for signal as  $R_{j,j} \rightarrow 1$ 



#### Search for exclusive $\gamma\gamma$

- √ 3 candidate events found
- √ 1 (+2/-1) predicted
  from ExHuME MC
- > estimated ~1 bgd event from  $\pi^0$   $\pi^0$  ,  $\eta$

 $\sigma$  < 410 fb (95% C.L.)

### Exclusive ete-Production

PRL 98, 112001 (2007)

First observation in hadron colliders



16 candidates :  $E_T > 5 GeV$ ,  $|\eta| < 2$ 

Backgound:  $1.9 \pm 0.3$  events

 $5.5\sigma$  observation

$$\sigma_{\rm exp} = 1.6^{+0.5}_{-0.3}(stat) \pm 0.3(syst) \, \rm pb$$

$$\sigma_{LPAIR} = 1.71 \pm 0.01 \ pb$$

agrees with LPAIR MC (QED)

# Exclusive Dijet Signal





# R<sub>JJ</sub>(excl): Data vs MC



#### **CDF Run II Preliminary**



ExHuME (KMR): gg→gg process

→ uses LO pQCD

Exclusive DPE (DPEMC)→ non-pQCD based on Regge theory

Shape of excess of events at high R<sub>jj</sub> is well described by both models

# jj<sub>excl</sub>: Exclusive Dijet Signal

#### COMPARISON

Inclusive data vs MC @ b/c-jet data vs inclusive

#### **CDF Run II Preliminary**



#### **CDF Run II Preliminary**



# JJ<sub>excl</sub>: x-section vs E<sub>T</sub>(min)

Comparison with hadron level predictions

ExHuME (red)

Exclusive DPE in DPEMC (blue)





# JJ<sub>excl</sub>: cross section predictions

ExHuME Hadron-Level Differential Exclusive Dijet Cross Section vs Dijet Mass (dotted/red): Default ExHuME prediction

(points): Derived from CDF Run II Preliminary excl. dijet cross sections



Statistical and systematic errors are propagated from measured cross section uncertainties using ExHuME  $M_{ii}$  distribution shapes.

# Summary

### CDF - what we have learnt

- $\rightarrow$  M<sup>2</sup> scaling  $\rightarrow$  d $\sigma/M^2$  not a function of s
- ➤ multigap diffraction → restoration of factorization!
- > flavor independence of diffractive fractions
- $\rightarrow$  small Q2 dependence of SD/ND  $x_{BJ}$ -distributions
- > t-distributions independent of Q2
- exclusive dijet cross sections favor the perturbative QCD over the DPE approach

#### LHC - what to do

- $\triangleright$  Elastic and total cross sections &  $\rho$ -value
- ➤ High mass (→4 TeV) and multi-gap diffraction
- Exclusive production (FP420 project)

For a QCD perspective, see Tuesday's talk on: "Pomerom Intercept and Slope: the QCD connection"