Renormalized Diffractive Parton Densities and Exclusive Production

K. Goulianos The Rockefeller University

Diffraction 2006

Milos island, Greece, 5-10 September 2006

Contents

Introduction
 Phenomenology
 Experiment confronts phenomenology
 Exclusive Production

p-p Interactions

<u>Non-diffractive:</u> Color-exchange

Diffractive:

Colorless exchange with vacuum quantum numbers rapidity gap

Incident hadrons acquire color and break apart

Incident hadrons retain their quantum numbers remaining colorless

3

Goal: develop a QCD based phenomenology for diffraction

Diffraction Dissociation

Factorization and scaling in soft single diffraction

- Total SD cross section
 Factorization breakdown
- M²-scaling
 - → controls level of breakdown

6

Total Single Diffractive Cross Section

M²-scaling

KG&JM, PRD 59 (1999) 114017

Factorization breaks down so as to ensure M²-scaling!

Double Diffraction Dissociation → entral rapidity gaps ←

How does one apply Pomeron flux renormalization in this case? → Need generalized renormalization!

9

PHENOMENOLOGY

Elastic and Total Cross Sections

QCD expectations

$$f = \Delta y' = \ln s \rightarrow y$$

$$f = \sigma_o s^{\varepsilon} = \sigma_o e^{\varepsilon \Delta y'}$$

The exponential rise of $\sigma_T(\Delta y')$ is due to the increase of wee partons with $\Delta y'$

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$\oint \Phi y = \ln s \longrightarrow$$

$$y$$

$$Im f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t) \Delta y}$$

Total cross section: power law rise with energy

Elastic cross section: forward scattering amplitude

Single Diffraction

Gap probability MUST be normalized to unity!

Single diffraction (re)normalized

The Factors K and E

Multigap Diffraction (KG, hep-ph/0205141)

Multigap Cross Sections

Diffractive Studies @ CDF

Central and Two-Gap CDF Results

Gap Survival Probability

Lessons from Soft Diffraction

- > M^2 scaling \rightarrow renormalization
- Non-suppressed 2-gap to 1-gap ratios
- Pomeron: composite object made up from underlying proton pdf's subject to QCD color constraints

HARD DIFFRACTION

η

- Diffractive structure function
 - → factorization breakdown how?
- Restoring factorization
- Diffractive fractions

JJ, W, b, J/ψ

Diffractive Structure Function: Breakdown of QCD Factorization

 β = momentum fraction of parton in Pomeron

The diffractive structure function at the Tevatron is suppressed by a factor of ~10 relative to expectation from pdf's measured by H1 at HERA

Similar suppression factor as in soft diffraction relative to expectations from Regge theory and factorization

Restoring Factorization @ Tevatron

$F^{D}_{JJ}(\beta)$ from ZEUS-LPS Data

From: M. Arneodo, HERA/LHC workshop, CERN, 11-13 Oct 2004

Hard Diffractive Fractions @ CDF

Fraction: SD/ND ratio at 1800 GeV

×	% Fraction (+/-)
W	1.15 (0.55)
JJ	0.75 (0.10)
Ь	0.62 (0.25)
J/ψ	1.45 (0.25)

All ratios ~ 1% →~ uniform suppression ~ FACTORIZATION !

Diffractive Structure Function: Q² dependence

Diffractive Structure Function: t- dependence

Fit d σ /dt to a double exponential: $F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$

- No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < 4,500 GeV² across soft and hard diffraction!

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what contitions?)

Inclusive vs Diffractive DIS

KG, "Diffraction: a New Approach," J.Phys.G26:716-720,2000 e-Print Archive: hep-ph/0001092

Diffractive Dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

$F^{D}_{JJ}(\xi,\beta,Q^{2})$ @ Tevatron

SD/ND Dijet Ratio vs x_{Bj} @ CDF

Flat ξ dependence

$$R(x) = x^{-0.45}$$

Hard Diffraction in QCD

Derive diffractive from inclusive PDFs and color factors

34

Diffractive Higgs @ LHC

Back of the envelope calculation

Inclusive production

 $\ln s'_{LHC} \approx \ln s_{Tevatron}$

σ^D(LHC) ~ P(gap) x σND (Tevatron) ~ 0.1 x 1 pb = 100 fb

Exclusive production

σ^{excl} ~ σ^{incl} × 0.02~ 2 fb Fraction of 2/all particle multiplicity

OTHER THEORETICAL PREDICTIONS

Exclusive DPE Higgs production $pp \rightarrow p H p$: 3-10 fb (KMR) Inclusive DPE Higgs production $pp \rightarrow p+X+H+Y+p$: 50-200 fb (others)

SUMMARY

