Diffraction with CDF II at the Tevatron

Konstantin Goulianos

The Rockefeller University
and
The CDF Collaboration

Contents

- > Overview
- > Diffractive W/Z
- > Exclusive JJ

Other CDF II results in this conference:

- > Exclusive di-leptons and di-photons
- > Rapidity gaps between (very forward!) jets

Overview

Soft and hard diffraction and exclusive processes at CDF

Breakdown of factorization - Run I

M^2 scaling - Run I $d\sigma/dM^2$ independent of s!

renormalization $\frac{d\sigma}{dM^2} \propto \frac{s^{2\varepsilon} - 1}{(M^2)^{1+\varepsilon}}$

→ Independent of S over 6 orders of magnitude in M²!

Factorization breaks down so as to ensure M² scaling!

M² scaling expected in QCD!

$$1 - x_{\rm L} \equiv \xi = \frac{M^2}{s}$$

vacuum exchange

$$\left(\frac{d\sigma}{d\Delta\eta}\right)_{t=0}\approx constant \Rightarrow \frac{d\sigma}{d\xi} \propto \frac{1}{\xi} \Rightarrow \frac{d\sigma}{dM^2} \propto \frac{1}{M^2}$$

Hard diffractive fractions - Run I

$$\overline{p}p \rightarrow (A + X) + gap$$

Fraction:
SD/ND ratio
@ 1800 GeV

	Fraction %
JJ	0.75 +/- 0.10
W	0.115 +/- 0.55
Ь	0.62 +/- 0.25
J /ψ	1.45 +/- 0.25

All fractions ~ 1% (differences due to kinematics)

- ~ uniform suppression
- FACTORIZATION!

Multi-gap diffraction - Run I → restoring factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

ξ & β dependence of F^{D}_{jj} - Run I

Diffractive structure function - Run II

Q² - dependence

- Small Q² dependence in region 100<Q²<10 000 GeV² where $d\sigma^{SD}/dE_{T}$ & $d\sigma^{ND}/dE_{T}$ vary by a factor of ~10⁴!
- → The Pomeron evolves as the proton!

Diffractive structure function - Run II

t - dependence

Fit $d\sigma/dt$ to a double exponential:

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

- > No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

> Same slope over entire region of $0 < Q^2 < \sim 10000 \text{ GeV}^2$!

Looks like...

... the underlying diffractive PDF on a hard scale is similar to the proton PDF except for small differences - presumably due to the requirement of combining with the soft PDF to form a spin 1 color singlet with vacuum quantum numbers.

Diffractive W/Z production

- Diffractive W production probes the quark content of the Pomeron
 - To leading order, the W is produced by a quark in the Pomeron

Production by gluons is suppressed by a factor of α_S and can be distinguished from quark production by an associated jet

Diffractive W/Z - motivation

- In Run I, by combining diffractive dijet production with diffractive W production we determined the quark / gluon content of the Pomeron ===→
- In Run II, we aim at determining the diffractive structure function for a more direct comparison with HERA.
- To accomplish this we use:
 - New forward detectors
 - New methodology
 - More data

The CDF II detectors

Diffraction 2008, Sep 9-14, La Londe-les-Maures, France | Diffraction with CDF II at the Tevatron |

Diffractive W/Z analysis

Using RPS information:

- No background from gaps due to multiplicity fluctuations
- No gap survival probability systematics
- The RPS provides accurate event-by-event ξ measurement
- Determine the full kinematics of diffractive W production by obtaining η_{ν} using the equation:

$$\xi^{RPS} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_\nu} \quad \text{where} \quad \frac{\xi^{cal}}{\xi^{cal}} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

This allows the determination of:

- W mass
- Diffractive structure function

W/Z selection requirements

Standard W/Z selection

$$E_T^e(p_T^{\mu} > 25 \text{ GeV})$$

$$M_T > 25 \text{ GeV}$$

$$40 < M_T^W < 120 \text{ GeV}$$

$$|Z_{\rm vtx}| < 60$$
 cm

$$E_T^{e1}(p_T^{\mu 1} > 25 \text{ GeV})$$

$$E_T^{e2}(p_T^{\mu 2} > 25 \text{ GeV})$$

$$66 < M^Z < 116 \text{ GeV}$$

$$|Z_{\rm vtx}| < 60$$
 cm

Diffractive W/Z selection

- □ RPS trigger counters require MIP
- \square RPS track 0.03< ξ < 0.10, |t|<1GeV²
- □ W → 50 < $M_W(\xi^{RPS}, \xi^{cal})$ < 120 GeV²
- \Box Z \rightarrow ξ^{cal} < 0.1

Reconstructed diffractive W mass

Rejection of multiple interaction events

Diffractive W/Z results

 R^{W} (0.03 < ξ < 0.10, |t|<1)= [0.97 ± 0.05(stat) ± 0.11(syst)]%

Run I: R^W (ξ <0.1)=[1.15±0.55] % \rightarrow 0.97±0.47 % in 0.03 < ξ < 0.10 & |t|<1

 R^{z} (0.03 < x < 0.10, |t|<1)= [0.85 ± 0.20(stat) ± 0.11(syst)]%

CDF/DØ Comparison – Run I (ξ < 0.1)

CDF PRL 78, 2698 (1997)

 $R^{w}=[1.15\pm0.51(stat)\pm0.20(syst)]\%$

gap acceptance Agap=0.81

Uncorrected for Agap

 $R^{\mathbf{w}} = (0.93 \pm 0.44)\%$

DØ Phys Lett B **574**, 169 (2003)

 $R^{w}=[5.1\pm0.51(stat)\pm0.20(syst)]\%$

gap acceptance $A^{gap}=(0.21\pm4)\%$

Uncorrected for Agap

 R^{W} =[0.89+0.19-0.17]%

 R^{z} =[1.44+0.61-0.52]%

Exclusive di-jet and Higg production

URL: http://link.aps.org/abstract/PRD/v77/e052004 Phys. Rev. D 77, 052004

The DPE data sample

$$\xi_{pbar}^{CAL} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

"DPE event sample": $0.01 < \xi^X < 0.12$ \rightarrow used to validate kinematic properties of di-jet events

Kinematic distributions

Exclusive di-jet signal

inclusive di-jet mass fraction

Excess observed over POMWIG MC prediction at large Rjj

Exclusive b-jets are suppressed as expected (J_z = 0 selection rule)

Underlying Event (UE)

Is it modeled correctly?

The data and POMWIG+Background distributions in the transverse $\Delta \phi$ -region relative to the di-jet axis agree, indicating that the UE is correctly modeled.

Jet1 vs. Jet2: signal and background regions

DATA

A: signal region

B: background region

POMWIG

Background region

Inclusive DPE W/LRG_p: data vs. MC

Shape of excess of events at high R_{jj} is well described by both ExHuME & DPEMC – but...

Heavy flavor suppression vs. inclusive signal

HF suppression

HF suppression vs. Incl

Invert HF vertically and compare with 1-MC/DATA

good agreement observed

ExHuME vs. DPEMC and vs. data

Exclusive di-jet x-section vs. Mii

<u>line</u>: ExHuME hadron-level exclusive di-jet cross section vs. di-jet mass <u>points</u>: derived from CDF excl. di-jet x-sections using ExHuME

Stat. and syst. errors are propagated from measured cross section uncertainties using $\,M_{ii}\,$ distribution shapes of ExHuME generated data.

SUMMARY

- Introduction
 - diffractive PDF looks like proton PDF
- Diffractive W/Z RPS data
 - W diffractive fraction in agreement with Run I
 - W/Z diffractive fractions equal within error
 - ➤ New techniques developed to enable extracting the diffractive structure function in W production
- □ Exclusive di-jet/(Higgs?) production
 - Results favor ExHuME over DPEMC Phys. Rev. D 77, 052004 (2008)

Measurements w/the MiniPlugs

$$\xi^{CAL} = \frac{\sum_{i} E_{T}^{i} e^{-\eta_{i}}}{\sqrt{s}}$$

NIM A 430 (1999) NIM A 496 (2003) NIM A 518 (2004)

ADC counts in MiniPlug towers in a pbar-p event at 1960 GeV.

- "jet" indicates an energy cluster and may be just a hadron.
- 1000 counts ~ 1 GeV

Dynamic alignment of RPS detectors

<u>Method</u>: iteratively adjust the RPS X and Y offsets from the nominal beam axis until a maximum in the b-slope is obtained @ t=0.

ETjet calibration

→use RPS information to check jet energy corrections ←

