DIFFRACTION NEWS FROM CDF

DIFFRACTION 2010 International Workshop on Diffraction in High-Energy Physics

Konstantin Goulianos

The Rockefeller University http://physics.rockefeller.edu/dino/myhtml/conference.html

Otranto (Lecce), Italy

Hotel Baia dei Turchi September 10 - 15, 2010

CONTENTS

Introduction

- Diffractive W and Z production
- □ Diffractive structure function in dijet production
- Central gaps in min-bias and dijet events
- Conclusions

<u>Goal</u>: understand the QCD nature of the diffractive exchange

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

Diffraction News from CDF

K. Goulianos 4

Diffraction at CDF in Run I

http://physics.rockefeller.edu/publications.html

"nested" gap

Diffractive Structure Function (DSF)

breakdown of QCD factorization

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

Diffraction News from CDF

K. Goulianos 7

Run I Hard diffractive fractions

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

Puzzles from run I diffraction at CDF

□ gap fractions are suppressed relative to theory predictions, both for soft (Regge) and hard diffraction ...but

factorization holds among processes at the same energy, just like at HERA

□ DSF at \sqrt{s} =1800 GeV suppressed by factor ~ 20 while Regge by factor ~8 → contradicts RENORM prediction

Why Run II Diffraction at CDF?

Resolve question on soft vs. hard diffraction suppression – are they really different? □ Make precise measurement of the DSF in dijets sensitive to gluon pdf's \Box Measure diffractive W/Z production sensitive to quark pdf's Central gaps in soft and hard diffraction - BFKL, Mueller-Navelet, other □ Aim to observe exclusive dijet production - important for diffractive Higgs searches

The CDF II Detector – plan view

The MiniPlugs @ CDF

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

Diffraction News from CDF

Measurements ^w/the MiniPlugs

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

Dynamic Alignment of RPS Detectors

<u>Method:</u> iteratively adjust the RPS X and Y offsets from the nominal beam axis until a maximum in the b-slope is obtained @ t=0.

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

FIG. 3: RPS acceptance as a function of ξ and t obtained from simulation using the transport parameters between the nominal interaction point and the Roman pots.

Diffractive W/Z production status: submitted to PRD

- In LO QCD W probes the quark content of diffractive exchange
- Production by gluons is suppressed by a factor of α_S, and can be distinguished from quark production by an associated jet

Diffractive W/Z analysis

Using RPS information:

- No background from gaps due to multiplicity fluctuations
- No gap survival probability problem
- **Ο** The RPS provides accurate event-by-event ξ measurement
- **Determine the full kinematics of diffractive W production by** obtaining η_v using the equation:

$$\xi^{\text{RPS}} - \xi^{\text{cal}} = \frac{E_{\text{T}}}{\sqrt{s}} e^{-\eta_{\text{v}}} \quad \text{where} \quad \xi^{\text{cal}} = \sum_{\text{towers}} \frac{E_{\text{T}}}{\sqrt{s}} e^{-\eta_{\text{v}}}$$

This allows determination of:

W mass

and potentially (not enough range in present case)

- x_{Bi} distribution
- Diffractive structure function

Data and event selection

0.6 fb-1 of integrated luminosity data

TABLE I: W and Z events passing successive selection requirements.

	$W \to e \nu$	$W \to \mu \nu$	$W \rightarrow l(e/\mu)\nu$	
RPS-trigger-counters	6663	5657	$12 \ 320$	
RPS-track	5124	4201	9325	\frown
$50 < M_W < 120$	192	160	352	← (W)
	$Z \rightarrow ee$	$Z \to \mu \mu$	$Z \rightarrow ll$	\bigcirc
$\operatorname{RPS-trigger-counters}$	650	341	991	
RPS-track	494	253	747	
$\xi^{\rm cal} < 0.10$	24	12	36	←(Z)
$\xi_{\bar{p}}^{\text{cal}} = \sum_{i=1}^{N_{\text{towers}}} \frac{E_{\text{T}}^{i}}{\sqrt{s}} e^{-s}$	η^i			

Reconstructed M_W^{diff}

M_W from inclusive $W \rightarrow e/\mu + v$

Method: compare transverse M^W data with MC

ξ^{cal} distribution

Diffractive W/Z fractions

$$R_W(R_Z) = \frac{2 \cdot N_{SD}^W(N_{SD}^Z)}{A_{\rm RPS} \cdot \epsilon_{\rm RPStrig} \cdot \epsilon_{\rm RPStrk} \cdot N_{ND}^{1-\rm int}}$$

~80% 68-80% ~87% f_{1-int} =(25.6±1.2)%

 $R_{w} (0.03 < \xi < 0.10, |t| < 1) = [0.97 \pm 0.05(stat.) \pm 0.10(syst.)]\%$

Run I: $R^{W} = 1.15 \pm 0.55$ % for $\xi_{min} < \xi < 0.1$

→ $[0.97\pm0.47 \text{ (stat and syst) \% within } 0.03 < \xi < 0.10 \& |t|<1$

 $R_z (0.03 < \xi < 0.10, |t| < 1) = [0.85 \pm 0.20(stat.) \pm 0.08(syst.)]\%$

- The x_{Bj}-distribution of the SD/ND ratio has no strong Q² dependence
- the slope of the t-distribution is independent of Q²
- the t-distribution ??????? diffraction minimum ???????

Diffractive structure function – Run II t - dependence

Fit d σ /dt to a double exponential: $F=0.9\cdot e^{b_1\cdot t}+0.1\cdot e^{b_2\cdot t}$

 No diffraction dips
No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < ~ 10 000 GeV²!

Dijet E_T distributions

→ similar for SD and ND over 4 orders of magnitude

Kinematics

DIFFRACTION 2010, 09/10-15 Otranto, ITALY

Diffraction News from CDF

σ^{T}_{SD} and dijets

CENTRAL GAPS

Gap Fraction in events with a CCAL gap

The distribution of the gap fraction $R_{gap} = N_{gap}/N_{all}$ vs $\Delta \eta$ for MinBias $(CLC_p \circ CLC_{pbar})$ and MiniPlug jet events $(MP_p \circ MP_{pbar})$ of $E_{T(jet1,2)} > 2$ GeV and $E_{T(jet1,2)} > 4$ GeV. The distributions are similar in shape within the uncertainties.

SUMMARY

Results were presented for diffractive W and Z fractions based on Run II CDF data using a Roman Pot Spectrometer (RPS) to measure the recoil pbar momentum.
The W fraction is in good agreement with the fraction measured in Run I based on a rapidity gap analysis.
The Z fraction is about 10% smaller than the W fraction, just as in non-diffractive events
A progress report was presented on the diffractive structure function in dijet production and on an analysis on central

rapidity gaps in min-bias and very forward dijet events.

your attendance

... use for last minute results

DIFFRACTION 2010, 09/10-15 Otranto, ITALY Dif

Diffraction News from CDF

K. Goulianos 31

$\xi \& \beta dependence of F^{D}_{jj} - Run I$

D/ND dijet ratio vs. x_{Bj}@ CDF

CDF Run I $\tilde{R}(x)$ 0.04 0.05 0.06 0.07 0.08 0.09 $\Delta \xi = 0.01$ $E_{T}^{Jet1,2} > 7 \text{ GeV}$ $|t| < 1.0 \text{ GeV}^2$ 10 stat. errors only $\beta = 0.5$ $R(x) = \frac{1}{1}$ 10 10 -3 -2 10 10 10 x (antiproton)

0.035 < ξ < 0.095 Flat ξ dependence for β < 0.5

$$R(x) = x^{-0.45}$$

F^D_{JJ}(ξ,β,Q²) @ Tevatron

Diffractive dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) \propto \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$