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Abstract. Results on factorization breaking in soft and hard hadron-hadron collisions, photo-
production and deep inelastic scattering exhibit a universal behavior in a renormalization model
where diffraction is mediated by a saturated colorless exchange with vacuum quantum numbers.
Using this model, diffractive and total cross sections are predicted for LHC energies.
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1. INTRODUCTION

Diffractive and total p(p̄)-p cross sections at high energies are dominated by Pomeron
(IP) exchange, and for a Pomeron intercept α(0) = 1 + ε the s-dependence is given
by [1]-[3]:

(dσel/dt)t=0 ∼ (s/so)
2ε , σt = β 2

IPpp(0) · (s/so)
ε , and σsd ∼ (s/so)

2ε , (1)

where s is the collision energy squared and so is a scale parameter. Such behavior would
violate unitarity at high energies, when the elastic and / or single diffractive (SD) cross
section would exceed the total cross section. In the case of SD, CDF results at

√
s =

540 GeV [1800 GeV] showed that violation of unitarity is avoided by a suppression of
σsd(s) by a factor of O(5) [factor of O(10)] relative to Regge expectations (see Ref. [2]).

In the present paper1, we describe the total cross section in a model based on a
saturated Froissart bound above s = sF , predicting a ln2 s dependence for σt at s ≥ sF ,

σt(s > s f ) = σt(sF)+(π/so) · ln2(s/sF), (2)

where the parameters sF and so are experimentally determined from available SD data.

2. DIFFRACTION

In Regge theory, the differential SD cross section is given by:

d2σsd(s,ξ , t)
dξ dt

= (β 2
IPpp/16π)ξ 1−2α(t) ·βIPpp(0)g(t)

(

s′/s◦
)ε

, (3)

1 This paper contains excerpts from the paper by this author presented in Ref. [3], and is updated to
include a prediction of σt at

√
s = 8 TeV, in addition to

√
s = 7 and 14 TeV.



where g(t) is the triple-IP coupling, fIP/p(ξ , t) the Pomeron flux and σ IPp (s′, t) the IPp
total cross section at the sub-energy squared s′. In Ref. [2], the unitarity violation arising
in the theory from the s2ε dependence of the SD cross section was resolved in the
renormalization model by interpreting the Pomeron flux as the production probability
of the rapidity gap and renormalizing the integrated probability over all phase space
in ξ and t to unity above the energy at which it saturates to unity. In effect, the
renormalization procedure eliminates double-counting from overlapping rapidity gaps
and is technically implemented by dividing the expression of the differential SD cross
section by the Pomeron flux integral at energies above the saturation energy.

In addition to averting unitarity violation by slowing down the growth of the diffrac-
tive cross section with increasing energy, the renormalization model resolved an out-
standing energy scale issue. From Eq. (1), it is seen that β 2

IPpp(0) ∼ sε
o, and therefore in

the diffractive cross section of Eq. (3) the Pomeron flux contains a scale factor sε
o, and

the IP-p cross section contains a factor sε
o · [s

ε/2
o · g(t) · s−ε

o ] = sε/2
o · g(t). Consequently,

only the product g(t) · sε/2
o can be determined from the measurement of σsd .

The g(t)-so entanglement was resolved in Ref. [2] by using for so a value determined
from results on σsd(s). It was argued that the observed knee in the cross section at√

sknee = 22 GeV (see Ref. [2]) occurs precisely at the energy at which the Pomeron flux
integral saturates to unity. Since this integral depends on both s and so, the measurement
of

√
sknee was used to determine so. The value of so was found to be so = 1±0.4 GeV2.

By a change of variables from ξ to M2, using ξ ≈ M2/s, Eq. (3) becomes:

d2σsd(s,M2, t)
dM2dt

=
[ σ◦

16π
σ IPp
◦

] s2ε

N(s,so)

ebt

(M2)1+ε , (4)

where b = b0 + 2α ′ ln s
M2 is the slope parameter of the t-distribution and N(s,so) the

integrated Pomeron flux,

N(s,so) ≡
∫ ξmax

ξmin
dξ

∫ −∞

t=0
dt fIP/p(ξ , t)

s→∞→ ∼ sε
o

s2ε

lns
. (5)

The asymptotic form of the differential cross section, obtained from Eqs. (4) and (5),

d2σsd(s,M2, t)
dM2dt

s→∞→ ∼ lns
ebt

(M2)1+ε . (6)

illustrates that division by the flux integral replaces s2ε by lns, preserving unitarity.
The extraction of so from the data in Ref. [2] was performed using ε = 0.115±0.008,

which is the average of the CDF measurements at
√

s = 540 GeV and 1800 GeV. There
is, however, a strong correlation between ε and so through the relationship displayed in
Eq. 5. Using the more accurate value of ε obtained by R. J. M. Covolan, J. Montanha
and K. Goulianos [4] from an eikonal global fit to p±p, K±p and π±p cross sections,
ε = 0.104±0.002, yields:

sCMG
o = (3.7±1.5) GeV2. (7)

This value is used below in a numerical evaluation of σt(s) based on Eq. 2.



3. TOTAL CROSS SECTION

Theoretical models predicting the total cross section at the LHC must satisfy all unitar-
ity constraints. Various unitarization procedures are employed, and available accelerator
and cosmic ray data on soft processes have been used to tune parameters in the mod-
els before fitting total cross section data and extrapolating to LHC energies. However,
while a rise of the total cross section from Tevatron to LHC is generally obtained, the
predictions for LHC are spread over a wide range. For example, in Ref. [3], several
authors predict total cross sections at

√
s = 14 TeV ranging from 90 to 250 mb. The

large disparity among these cross section predictions is mainly due to theoretical uncer-
tainties emanating from the unitarization method employed and/or from the values and
uncertainties of the parameters used in the models. The predictive power of our inher-
ently unitarized approach based on the analytic expression of Eq. 2 is only limited by
the uncertainties propagated from the statistical and systematic uncertainties of the two
experimentally determined parameters sF and so.

In a recent paper [6], a parton model approach to diffraction was introduced as
a special phenomenological interpretation of the parton model for the Pomeron in
QCD described by E. Levin in Ref. [5]. The parton model yields formulas similar to
those of Regge theory. In Ref. [6], interpreting the term which is equivalent to the
Pomeron flux as a gap formation probability leads naturally to a QCD concept of the
renormalization procedure as eliminating double-counting from multiple exchanges of
wee-partons (lowest energy partons in a partonic cascade), which provide the color-
shield to a primary partonic exchange enabling the formation of diffractive rapidity gap.

Returning to Eq. (2), the saturation of the Froissart bound occurs in the wee-parton
exchange governed by the value of the scale parameter so that enters in the diffractive
cross section in Eq. (3). Interpreting so as the mass-squared of a partonic glueball-
like object that is exchanged, and inserting it into the Froissart formula in place of the
traditionally used m2

π , should saturate the bound at the collision energy of:
√

sF = 22 GeV, (8)

which is the value obtained in Ref. [2] from the knee in the σsd(s) distribution.
Predicting the total cross section at the LHC using Eq. (2) requires knowledge of

σ(sF). However, the cross section at
√

sF = 22 GeV has substantial Reggeon exchange
contributions, and also contributions from the interference between the nuclear and
Coulomb amplitudes. A complete description would have to take all these contributions
into consideration, using Regge theory amplitudes to describe Reggeon exchanges, and
dispersion relations to obtain the real part of the amplitude from the measured total
cross sections up to Tevatron energies. Here, we follow a strategy that bypasses all these
hurdles. For completeness, we outline below all steps in our cross section evaluation
process:

(i) use the Froissart formula as a saturated rather than an upper bound;
(ii) Eq. (2) should then describe the cross section above the knee in σsd vs.

√
s, which

occurs at
√

sF = 22 GeV (Fig. 1 in Ref. [2]), and therefore should be valid at the
Tevatron at

√
s = 1800 GeV;



(iii) set m2 = so/(h̄c)2 ≈ so/0.389 GeV2·mb, where so = sCMG
o = (3.7± 1.5) GeV2 –

see Eq. (7);
(iv) note that contributions from Reggeon exchanges at

√
s = 1800 GeV are negligible,

as can be verified from the global fit of Ref. [4];
(v) obtain the total cross section at the LHC as:

σLHC
t = σCDF

t +
π
so

·
(

ln2 sLHC

sF
− ln2 sCDF

sF

)

. (9)

Using the CDF total cross section of 80.03±2.24 mb at
√

s = 1.8 TeV yields:
TABLE 1. Predicted σ pp

t
√

s σ pp
t (mb)

7 TeV 98±8
8 TeV 100±8

14 TeV 109 ±12

The result for
√

s = 14 TeV falls within the range of cross sections predicted by the
various authors in Ref. [3], and is in good agreement with σ CMG

t = 114±5 mb obtained
by the global fit of Ref. [4].

4. SUMMARY

The total pp cross section at the LHC is predicted in a phenomenological approach that
obeys all unitarity constraints. The approach is based on a saturated Froissart bound
above a pp collision energy squared s = sF , leading to an analytic ln2 s dependence
for the total cross section, σt = (π/so) · ln2(s/sF). The formula contains two scale
parameters, sF and so, which are experimentally determined from presently available SD
cross section data. A total cross section of σt = 98±8 mb , 100±10 mb and 109±12 mb
is predicted for a pp collision energy of

√
s = 7, 8, and 14 TeV, respectively.
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