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We discuss a phenomenological model that describes results on diffractive pp and p̄p cross sections
and event final states up to the Fermilab Tevatron energy of

√
s = 1.96 TeV and use it to make

predictions for Large Hadron Collider (LHC) energies up to
√

s = 14 TeV and asymptotically as√
s → ∞. The model is anchored in a saturation effect observed in single diffraction dissociation that

explains quantitatively the factorization breaking observed in soft and hard pp and p̄p diffractive
processes and in diffractive photoproduction and low Q2 deep inelastic scattering.
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I. INTRODUCTION

As we entered a new energy frontier at the Large
Hadron Collider (LHC) with data collected at

√
s =

900 GeV, 2360 GeV, and 7 TeV from Fall 2009 to Spring
2010, it became painfully clear that the Monte Carlo
(MC) simulations designed to represent the collective
knowledge of the field on diffractive cross sections and
event final states did not meet the challenge presented to
them in this new higher energy environment. The most
commonly used event generators, pythia [1] and pho-

jet [2], were found to disagree not only with the data but
also with each other. The latter clearly meant that the
two simulations could not both be right. Therefore, an
update of the MCs was urgently needed. Because of the
importance of Minimum-Bias (MB) MC simulations in
estimating trigger rates, backgrounds, and the machine
luminosity at the LHC, a “diffraction” workshop was
organized at CERN on 7 May 2010 [3] that brought ex-
perimentalists and theorists together to exchange ideas
with the goal of producing a reliable MC generator for
the LHC. This paper is based on a talk I presented at
that meeting and an expanded version presented at this
workshop.

Diffraction dissociation in pp/p̄p interactions may be
defined by the signature of one or more “large” and char-
acteristically not exponentially suppressed [4] rapidity
gaps (regions of rapidity devoid of particles) [5] in the
final state. The rapidity gap is presumed to be due
to the exchange of a strongly-interacting color singlet
quark/gluon combination with the quantum numbers of
the vacuum, traditionally referred to as “Pomeron” (IP ).
Diffractive processes are classified as single diffraction
(SD), double Pomeron exchange (DPE), also referred
to as central dissociation (CD), and double diffraction
(DD). In p̄p SDp̄ (SDp), the p(p̄) dissociates while the
p̄(p) remains intact escaping the collision with momen-
tum close to that of the original beam momentum and
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FIG. 1: Non-diffractive and diffractive pp interactions.

separated from the p (p̄) dissociation products by a for-

ward gap; in DPE both the p̄ and the p escape, result-
ing in two forward gaps; and in DD a central gap is
formed while both the p and p̄ dissociate. The above ba-
sic diffractive processes are listed below, along with two
additional two 2-gap processes which are combinations of
SD and DD and are indicated as SDD:

TABLE I: Diffractive cross sections.

acronym basic diffractive processes
SDp̄ p̄p → p̄ + gap + [p → Xp],
SDp p̄p → [p̄ → Xp̄] + gap + p,
DD p̄p → [p̄ → Xp̄] + gap + [p → Xp],
DPE p̄p → p̄ + gap + Xc + gap + p,

2-gap combinations of SD and DD
SDDp̄ p̄p → p̄ + gap + Xc + gap + [p → Xp],
SDDp p̄p → [p̄ → Xp̄]gap + Xc + gap + p.

Here, Xp̄, Xp and Xc represent clusters of particles in
rapidity regions not occupied by the gap(s). The 2-gap
processes are examples of multi-gap diffraction, a term
coined by this author to represent events with multiple
diffractive rapidity gaps. A special case of DPE is exclu-

sive production, where a particle state is centrally pro-
duced, as for example a dijet system or a Z boson.

Below, in Sec. II (strategy) we outline the method we
follow to implement an algorithm for a MC simulation, in
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FIG. 2: Average multiplicity dN/dη (vertical axis) vs. η (horizontal axis) for a process with four rapidity gaps, ∆ηi(i = 1− 4).

Sec. III (cross sections and final states) we present
excerpts from previous papers on total and differential
diffractive cross sections and final states, and in Sec. IV
we conclude.

II. STRATEGY

A phenomenology that is used to make predictions for
the LHC and beyond should be based on cross sections
and final states that incorporate the current knowledge
in the field molded into a form that can be extrapolated
to higher energies. The issues to be addressed is how
to take into account saturation effects that suppress
cross sections, and what formulas to use for event final
state multiplicity, pseudorapidity, and transverse energy
(ET ) [6] distributions. In addition, the structure of an
algorithm for implementing this knowledge into a MC
simulation should also be addressed. The algorithm
must be robust against changes in the collision energy,
so that it may be equally well applied to simulate
collisions at fixed target energies as well as at the higher
energies of pp and p̄p colliders and in astrophysics. In
this section, we outline a strategy that addresses these
issues.

The following input is used for cross sections and final
states:

(i) d2σ/dξdt of the diffractive processes listed in Table I
from the renorm model [7];

(ii) σt(s) from superball model [8];

(iii) optical theorem → Imfel(t = 0) (imaginary part
of the forward scattering amplitude);

(iv) dispersion relations → Re fel(t = 0), using low
energy cross sections from global fit [9];

(v) final states: use “nesting” to describe gap processes,
where a nest is defined as a region of ∆η where there
is particle production, in contrast to a gap region
where there are no particles [10, 11].

Figure 2 shows a schematic η topology of an event with
four rapidity gaps and three nests of final state particles.

The cross section for this configuration is presented in
Sec. IIIA

We propose the following algorithm for generating final
states:

• start with a pp → X inelastic collision at
√

s;

• decide whether the collision is ND or diffractive
based on the expected cross sections; if ND, use
the ND final state expected at

√
s; if diffractive,

select SDp̄, SDp, DD, or DPE based on probabili-
ties scaled to the corresponding cross sections;

• for each diffractive event, check whether the region
of η where particles are produced, ∆η′, is large
enough to accommodate additional diffractive ra-
pidity gaps: if yes, decide whether or not the event
will have other gaps within this region, again us-
ing probabilities scaled to the cross sections, and
branch off accordingly;

• continue this process until the region ∆η′ is too
small to accommodate another diffractive gap.

It is important to note that in our definition of a ND
collision there are no diffractive gaps whatsoever in the
final state of the event. In this respect, this definition dif-
fers from those of “inclusive” or “non-single-diffractive”
definitions of ND events used in the literature.

III. CROSS SECTIONS AND FINAL STATES

In this section, we discuss briefly the diffraction disso-
ciation and total cross sections using information and/or
excerpts from Refs. [7, 13].

A. Diffractive cross sections

In Ref. [12], the following expression is obtained for the
SD cross section [quoting]:
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d2σsd(s,∆η, t)

dt d∆η
=

1

Ngap(s)
×

Cgap · F 2
p (t)

{

e(ε + α′ t)∆η
}2

︸ ︷︷ ︸

Pgap(∆η, t)

· κ ·
[

σ◦ eε∆η′
]

, (1)

where:
(i) the factor in square brackets represents the
cross section due to the wee partons in the η-
region of particle production ∆η′;
(ii) ∆η = ln s-∆η′ is the rapidity gap;
(iii) κ is a QCD color factor selecting color-
singlet gg or qq̄ exchanges to form the rapidity
gap;
(iv) Pgap(∆η, t) is a gap probability factor
representing the elastic scattering between
the dissociated proton (cluster of dissociation
particles) and the surviving proton;
(v) Ngap(s) is the integral of the gap prob-
ability distribution over all phase-space in t
and ∆η;
(vi) Fp(t) in Pgap(∆η, t) is the proton form

factor Fp(t) = eb◦t ... ; and
(vii) Cgap is a normalization constant, whose
value is rendered irrelevant by the renormal-
ization division by Ngap(s). ...
By a change of variables from ∆η to M 2 using
∆η′ = ln M2 and ∆η = ln s − ln M2, Eq. (1)
takes the form:

d2σ(s,M2, t)

dM2dt
=

[ σ◦

16π
σIPp
◦

] s2ε

N(s)

1

(M2)
1 + ε

eb t

s → ∞⇒

[

2α′ e
ε b0

α′

σIPp
◦

]

ln s2ε

(M2)
1 + ε

eb t, (2)

where b = b0 +2α′ ln s
M2 [b is the slope of the

diffractive t-distribution]. Integrating this ex-
pression over M2 and t yields the total single
diffractive cross section,

σsd
s → ∞→ 2σIPp

◦
exp

[
ε b0

2α′

]

= constant ≡ σ∞

sd . (3)

The remarkable property that the total single
diffractive cross section becomes constant as
s → ∞ is a direct consequence of the coher-
ence condition required for the recoil proton
to escape the interaction intact. This condi-
tion selects one out of several available wee
partons to provide a color-shield to the ex-
change and enable the formation of a diffrac-
tive rapidity gap.

Details are presented in Ref. [12], where this formula-
tion of the cross section is used to derive the ratio of the

intercept to the slope of the Pomeron trajectory. Good
agreement with the ratio extracted from measurements
is obtained, providing support for the renormalization
approach used in the phenomenology.

A similar expression may be use for DD, DPE, and
multigap processes, as discussed in Refs. [10, 11]. For
example, the differential cross section for the process dis-
played in Fif. 2 is derived in Ref. [11] as [quoting]:

d10σD

Π10
i=1dVi

= N−1
gap F 2

p (t1)F
2
p (t4)Π

4
i=1

{

e[ε+α′ti]∆ηi

}2

︸ ︷︷ ︸

gap probability

×κ4
[

σ0 eε
P

3

i=1
∆η′

i

]

, (4)

where the term in square brackets is the pp
total cross section at the reduced s-value, de-
fined through ln(s′/s0) =

∑

i ∆η′

i, κ (one for
each gap) is the QCD color factor for gap for-
mation, the gap probability is the amplitude
squared for elastic scattering between two
diffractive clusters or between a diffractive
cluster and a surviving proton with form fac-
tor F 2

p (t), and Ngap is the (re)normalization
factor defined as the gap probability inte-
grated over all 10 independent variables ti,
ηi, η′

i, and ∆η ≡
∑4

i=1 ∆ηi.

The renormalization factor Ngap is a func-
tion of s only. The color factors are cg =
(N2

c −1)−1 and cq = 1/Nc for gluon and quark
color-singlet exchange, respectively. Since the
reduced energy cross section is properly nor-
malized, the gap probability is (re)normalized
to unity. The quark to gluon fraction, and
thereby the Pomeron intercept parameter ε
may be obtained from the inclusive parton
distribution functions (PDFs) [13]. Thus,
normalized differential multigap cross sec-
tions at t = 0 may be fully derived from in-
clusive PDFs and QCD color factors without
any free parameters.

The exponential dependence of the cross sec-
tion on ∆ηi leads to a renormalization fac-
tor ∼ s2ε independent of the number of gaps
in the process. This remarkable property of
the renormalization model, which was con-
firmed in two-gap to one-gap cross section ra-
tios measured by the CDF Collaboration (see
Ref. [13]), suggests that multigap diffraction
can be used as a tool for exploring the QCD
aspects of diffraction in an environment free
of rapidity gap suppression effects. The LHC
with its large rapidity coverage provides the
ideal arena for such studies.
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FIG. 3: Total pp/p̄p single-diffraction dissociation cross sec-
tion data (sum of both p̄ and p dissociation) for ξ < 0.05
compared with predictions based on the standard and the
renormalized Pomeron flux (from Ref. [7]).

B. The total cross section

In Ref. [8], an analytic expression is obtained for the
total cross section using a parton model approach and
exploiting a saturation effect observed in the SD cross
section. The abstract of Ref. [8] reads [quoting]:

The single-diffractive and total pp cross sec-
tions at the LHC are predicted in a phe-
nomenological approach that obeys all uni-
tarity constraints. The approach is based
on the renormalization model of diffraction
and a saturated Froissart bound for the total
cross section yielding σt = (π/so) · ln2(s/sF )
for s > sF , where the parameters so and sF

are experimentally determined from the
√

s-
dependence of the single-diffractive cross sec-
tion.

The following strategy is used in Ref. [8] [quoting]:

• Use the Froissart formula as a saturated cross
section rather than as a bound above sF :

σt(s > sF ) = σt(sF ) + π
m2 · ln2 s

sF

• This formula should be valid above the knee

in σsd vs.
√

s at
√

sF = 22 GeV (Fig. 3) and
therefore valid at

√
s = 1800 GeV.

• Use m2 = so in the Froissart formula multi-
plied by 1/0.389 to convert it to mb−1.

• Note that contributions from Reggeon ex-
changes at

√
s = 1800 GeV are negligible, as

can be verified from the global fit of Ref. [9].

• Obtain the total cross section at the LHC:

σLHC
t = σCDF

t +
π

so

·
(

ln2 sLHC

sF

− ln2 sCDF

sF

)

For a numerical evaluation of σLHC we use
as input the CDF cross section at

√
s =

1800 GeV, σCDF
t = 80.03 ± 2.24 mb, the

Froissart saturation energy
√

sF = 22 GeV,
and the parameter so.
...The resulting prediction for the total cross
section at the LHC at

√
s = 14 TeV is:

σLHC
14 TeV = (80 ± 3) + (29 ± 12) = 109 ± 12 mb.

For
√

s = 7 TeV, the predicted cross section is:

σLHC
7 TeV = 98 ± 8 mb

[
at

√
s = 7 TeV

]
,

The result for
√

s = 14 TeV is in good agreement with
σCMG

t = 114±5 mb obtained by the global fit of Ref. [9],
where the uncertainty was estimated from δε and the sε

dependence from which the value of the parameter so was
obtained.

IV. CONCLUSIONS

We briefly discuss a phenomenological model that de-
scribes available results on diffractive pp and p̄p cross
sections and event final states up to the Fermilab Teva-
tron energy of

√
s = 1.96 TeV and refer the reader to

previous publications for further details. We also outline
a procedure to be used to implement the predictions of
the model into a Monte Carlo simulation that is robust
against changes in the collision energy, so that it may
be equally well applied to simulate collisions at fixed
target energies as well as at the higher energies of the
Tevatron, the LHC, and beyond. The model is anchored
in a saturation effect observed in single diffraction dis-
sociation that explains quantitatively the factorization
breaking observed in soft and hard pp and p̄p diffractive
processes and in diffractive photoproduction and low Q2

deep inelastic scattering.
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program of presentations at the threshold in time of the
opening of a new era in particle physics at the Large

Hadron Collider.
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