New results on diffractive t-distributions from CDF

Konstantin Goulianos The Rockefeller University

(for the CDF Collaboration)

DIS-2012

XX International Workshop on Deep-Inelastic Scattering and Related Subjects

DIS-2012, Bonn, GERMANY

□ MOTIVATION

- diffraction in QCD
- diffraction in CDF: factorization breaking
- how does factorization breaking affect t distributions?

L t DISTRIBUTIONS : inclusive and dijet data

- Forward detectors with/roman pot spectrometer (RPS)
 - dynamic alignment of RPS
- > *t*-distributions vs. $Q^2 \approx (E_{T,jet})^2$ over a wide range:
 - ~ $1 \le Q^2 \le 10^4 \text{ GeV}^2$ and t_{\min} (~0) $\le -t \le 4 \text{ GeV}^2$
- search for a diffraction minimum

SUMMARY

DIFFRACTION IN QCD

Goal: probe the QCD nature of the diffractive exchange

DIFFRACTION IN CDF

DIS-2012, Bonn, GERMANY

DIS-2012, Bonn, GERMANY

The CDF II Detector

DIS-2012, Bonn, GERMANY

The RPS IN CDF II

Roman Pot Arrangement

The MiniPlugs

 \rightarrow overlap bgnd (BG) is reduced by including the MPs in the ξ^{CAL} calculation

 ξ^{CAL} VS. ξ^{RPS}

DIS-2012, Bonn, GERMANY

TRIGGERS AND EVENT SAMPLES

- RPS_{track}: RPS with RPS tracking available (included in the RPS trigger);
- J5, J20, J50: jet with $E_T^{jet} \ge 5$, 20, 50 GeV in CCAL or PCAL;
- RPS·Jet5 (Jet20, Jet50): RPS in coincide with J5, J20, J50.

Event sample	$\langle E_T^* \rangle$ GeV	$Q^2 m GeV^2$
RPS RPS·Jet5 RPS·Jet20 RPS·Jet50	$\begin{array}{c} \mathrm{incl} \\ 15 \\ 30 \\ 67 \end{array}$	≈ 1 225 900 4500

Dynamic Alignment of RPS

<u>Method:</u> iteratively adjust the RPS X and Y offsets from the nominal beam axis until a maximum in the b-slope is obtained @ t=0. New: uncertainty in the slope due to alignment fixed & **CDF II** -t=-0.5t=0- t=-0.5 QUADs DIPOLEs QUADs pbar UNING SYSTEM C. ₹ 57m to CDF PCAL MP CLC BSC RPS CDF Run II Preliminary units] Limiting factors at |t|=0 [arbitrary ____X_{offset} at nominal 1-statistics ––– X_{offset}+0.2 cm ±2 mm 2-beam size **___** X_{offset}+0.4 cm 3-beam jitter Y offset [cm] CDF Run II Preliminary at [t]=0 [arbitrary units] <u>use RPStrk data</u> 10^{2} width~ 2 mm/JN ±2 mm N~1 K events slope $\Delta X \Delta Y = \pm 60 \mu$ 0.9 0.8 0.2 0.3 0.40.5 0.6 0.7 |t| [GeV²] X offset [cm]

DIS-2012, Bonn, GERMANY

Diffractive t-distributions from CDF

RPS ACCEPTANCE

□ acceptance beyond 4 GeV² minimizes edge effects

DATA REDUCTION

CDF Run II Preliminary

Selection requirement	RPS	$RPS \cdot Jet5$	$RPS \cdot Jet 20$	$RPS \cdot Jet 50$
Trigger	$1 \ 634 \ 723$	$1 \ 124 \ 243$	$1 \ 693 \ 644$	757 731
good-run events	$1 \ 431 \ 460$	955 006	$1 \ 421 \ 350$	$561 \ 878$
$\not\!$	$1 \ 431 \ 253$	950 776	$1 \ 410 \ 780$	539 957
$N(jet) \ge 2$: $E_T^{1,2} > 5$ GeV, $ \eta^{1,2} < 2.5$	59157	$557 \ 615$	$1\ 168\ 881$	521 645
splash veto	27 686	$259\ 186$	541 031	$215 \ 975$
RPT	27 680	$259\ 169$	541 003	215 974
SD $(0.03 < \xi_{\overline{p}}^{CAL} < 0.09)$	$1 \ 458$	20 602	26559	4 432

CDF Run II Preliminary

Data set	$L \ (\mathrm{pb}^{-1})$	ϵ_{RPT}
set 0	12.9	0.78 ± 0.08
set 1	24.0	0.75 ± 0.08
set 2	20.3	0.69 ± 0.07
set 3	6.4	0.57 ± 0.06
set 4	29.2	0.51 ± 0.05
set 5	16.3	0.46 ± 0.05
set 6	18.9	0.48 ± 0.05
set 7	25.5	0.43 ± 0.04
set 8	22.1	0.40 ± 0.04

DIS-2012, Bonn, GERMANY

t-distributions for -*t*≤1 GeV²

Fit $d\sigma/dt$ to a double exponential:

$$F=0.9\cdot e^{b_1\cdot t}+0.1\cdot e^{b_2\cdot t}$$

 No diffraction dips
 No Q² dependence in slope from inclusive to Q²~10⁴ GeV²

b-slopes for $-t \le 1 \text{ GeV}^2(1)$

CDF Run II Preliminary

Event	$\langle E_T^* \rangle$	Q^2	$\mathbf{b_1}$	\mathbf{b}_2	b_1 / b_1^{incl}	b_2/b_2^{incl}
sample	${ m GeV}$	$ m GeV^2$	${ m GeV}^{-2}$	GeV^{-2}	ratio	ratio
RPS	incl	≈ 1	5.4 ± 0.1	1.2 ± 0.1	1	1
$RPS \cdot Jet5$	15	225	5.0 ± 0.3	1.4 ± 0.2	0.93 ± 0.08	1.12 ± 0.23
$RPS \cdot Jet 20$	30	900	5.2 ± 0.3	1.1 ± 0.1	0.96 ± 0.07	0.93 ± 0.16
$RPS \cdot Jet 50$	67	4500	5.5 ± 0.5	0.9 ± 0.2	1.00 ± 0.10	0.72 ± 0.18

CDF Run II Preliminary

Source of uncertainty	δb_1	δb_2
RPS tracker threshold	1%	1%
Instantaneous luminosity	2%	2%
Beam store / run number	4%	8%
RPS alignment	5%	5%

$\Box \leq 20\%$ dependence on Q^2 over ~ 4 orders of magnitude

b-slopes for $-t \le 1 \text{ GeV}^2(2)$

DIS-2012, Bonn, GERMANY

Dijet E_T*-distributions:

→ similar for SD and ND over 3 orders of magnitude!

DIS-2012, Bonn, GERMANY

Why select 0.05<ξ_{pbar}<0.08?

be on the plateau of the ds/dlnξ distribution
 allow enough room to avoid edge-effects
 accept enough events for good statistics

\Box estimated width resulting from the $\Delta \xi$: $\Delta \tau \approx 0.47$

t-distributions for -*t*≤4 GeV²

DIS-2012, Bonn, GERMANY

CONCLUSION

t DISTRIBUTIONS : *inclusive* and *dijet* data

> measured over a wide range of $Q^2 \approx (E_{T,jet})^2$:

~ $1 \le Q^2 \le 10^4 \text{ GeV}^2$ and t_{\min} (~0) $\le -t \le 4 \text{ GeV}^2$

 \succ independent of Q^2

> agree with the DL model at $-t \le \sim 0.5 \text{ GeV}^2$

Flatten out beyond -t ~1.5 to become a factor of ~10 larger than the DL model prediction

THANK YOU FOR YOUR ATTENTION