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The single-diffractive and total pp cross sections at the LHC are predicted in a phenomeno-
logical approach that obeys all unitarity constraints. The approach is based on the renor-
malization model of diffraction and a saturated Froissart bound for the total cross section
yielding σt = (π/so) · ln

2(s/sF ) for s > sF , where the parameters so and sF are experi-
mentally determined from the

√
s-dependence of the single-diffractive cross section.
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Figure 1: Total pp/p̄p single diffraction dissoci-
ation cross section data (both p̄ and p sides) for a
forward p̄ or p momentum loss fraction ξ < 0.05
compared with Regge theory predictions based
on the standard and the renormalized Pomeron
flux (from Ref. [5]).

The measurements of the elastic [1] (σel), to-
tal [2] (σt), and single-diffractive [3] (σsd)
cross sections by the Collider Detector at Fer-
milab (CDF), published in 1994, brought into
sharp focus the unitarity problems inherent
in the traditional Regge theory description
of soft cross sections (see [4]). According to
the theory, the cross sections at high energies
are dominated by Pomeron (IP ) exchange,
and with a Pomeron trajectory of intercept
α(0) = 1 + ε the s-dependence is given by:

dσel

dt
|t=0 ∼

(
s

so

)2 ε

,

σt ∼
(

s

so

)ε

,

σsd ∼
(

s

so

)2 ε

.

Such behavior would violate unitarity at high
energies with the elastic and/or the single-
diffractive cross section(s) becoming larger
than the total cross section. Unitarity, of
course, should be obeyed in nature, and the
CDF Measurements of σsd at

√
s = 540 and

1800 GeV showed that σsd is suppressed at high energies relative to Regge predictions preserving
unitarity. This result is spectacularly displayed in Fig. 1 from Ref. [5].
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The Pomeron exchange contribution to the cross sections can be written as:

σt(s) = β2
IPpp(0)

(
s

s◦

)α(0) − 1
⇒ σ◦

(
s

s◦

)ε
, (1)

dσel(s, t)

dt
=

β4
IPpp(t)

16π

(
s

s◦

)2 [α(t) − 1]
, (2)

d2σsd(s, ξ, t)

dξdt
=

β2
IPpp(t)

16π
ξ1−2α(t)

︸ ︷︷ ︸

fIP/p(ξ, t)

βIPpp(0) g(t)

(
s′

s◦

)α(0)−1

︸ ︷︷ ︸

σIPp (s′, t)

. (3)

The two terms in the diffractive cross section, Eq. (3), are the Pomeron flux, fIP/p(ξ, t), pre-
sumed to be emitted by the diffractively scattered proton, end the IP -p total cross section,
σIPp (s′, t). The parameters appearing in Eq. (3) are identified as follows:

• α(t) = α(0) + α′t = (1 + ε) + α′t = (1 + 0.08) + 0.25 t is the Pomeron trajectory;

• βIPpp(t) is the coupling of the Pomeron to the proton, β2
IPpp(t) = σ◦ · eb◦t, where σ◦ ≡

β2
IPpp(0) and eb◦t is the form factor of the diffractively escaping proton, F 2

p (t) = eb◦·t;

• g(t) is the triple-Pomeron (IPIPIP ) coupling, which was found experimentally to be inde-
pendent of t [6];

• s′ ≡ M2 is the IP -p c.m.s. s-value, with M the mass of the diffractively excited proton;

• ξ ≈ M2/s is the momentum fraction of the incident proton carried by the Pomeron;

• s◦ is an energy scale parameter.

In Ref. [5], the unitarity problem arising from the s2ε dependence of the single-diffractive cross
section was addressed by interpreting the Pomeron flux factor as the probability of forming
a diffractive rapidity gap and renormalizing the integrated probability over all phase space in
ξ and t to unity if it exceeded unity. Technically, the renormalization was accomplished by
dividing the differential diffractive cross section by the flux integral above the

√
s value of the

p̄p collision energy at which the flux became unity.
The renormalization procedure solved an outstanding energy scale problem in diffraction.

From Eq. 1, one sees that β2
IPpp(0) ∼ sε

o, and therefore in the diffractive cross section given
in Eq. 3 the Pomeron flux contains a scale factor sε

o while the Pomeron-proton cross section

contains a factor s
ε/2
o · g(t). Consequently, neither so nor g(t) can be independently determined

from the measurement of the differential or total diffractive cross sections, but only the product

g(t) · sε/2
o . This is of such importance that it deserves being framed:

fIP/p(ξ, t) ∼ sε
o σIPp (s′, t) ∼ s−ε/2

o · g(t) ⇒ σsd determines: g(t) · sε/2o

In Ref.[5], this entanglement was resolved by using so = 1 GeV2, a value determined from
the results displayed in Fig. 1. It was argued that the knee in the cross section observed at√

s = 22 GeV occurs at the energy at which the Pomeron flux integral becomes unity. Since
this integral depends on s and so, determining the s-value at which the integral is unity yields
so. The value of so was found to be so = 1 GeV2, and that of the triple-Pomeron coupling
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g(t) = 0.69 mb
1

2 = 1.1 GeV−1. It was also mentioned in the paper that the uncertainty in so in
terms of the uncertainty in the position of the knee is δso/so = −δs/s = −4(δ

√
s/
√

s), and thus
a reasonable 10% uncertainty in the

√
s-position of the knee would result in a 40% uncertainty

in the value of so.
With all the parameters in Eq. 3 experimentally determined, the differential and total single

diffractive cross sections at the LHC can be predicted. In Ref. [5], using a linear logarithmic
expression A + B ln s (s in GeV2) in the range 22 <

√
s < 10 000 GeV, the following parame-

terization was obtained for the total single diffractive cross section:

σpp̄
sd |ξ<0.05 ≈ 4.3 + 0.3 ln smb (22 <

√
s < 10 000 GeV). (4)

By extrapolating to LHC energies, this formula predicts σpp
sd |ξ<0.05 = 10.0mb at

√
s = 14 TeV.

An uncertainty of ≤ 10% is estimated for the cross section in Eq. 4 given the 5% uncertainty
of the CDF measurements and that resulting from the Pomeron trajectory parameters.

The underlying basis of the renormalization concept is revealed by a change of vari-
ables from ξ to M2 using the relationship ξ = M 2/s. This leads to a diffractive cross section:

d2σsd(s,M
2, t)

dM2dt
=

[ σ◦

16π
σIPp
◦

] s2ε

N(s, so)

ebt

(M2)
1 + ε

, (5)

where b = b0 +2α′ ln s
M2 is the slope parameter of the t-distribution and N(s, so) the integrated

Pomeron flux. The latter is obtained from a straight-forward integration:

definition : fIP/p(ξ, t) ⇒ N−1(s, so) · fIP/p(ξ, t),

N(s, so) ≡
∫ ξ(max)

ξ(min)

dξ

∫
−∞

t=0

dt fIP/p(ξ, t)
s→∞→ ∼ sε

o · s2ε/ ln s. (6)

The asymptotic form for s → ∞ is given here to illustrate that division by the integrated flux
in Eq. 5 replaces the s2ε term by a ln s dependence preserving unitarity:

d2σsd(s,M
2, t)

dM2dt

s→∞→ ∼ ln s
ebt

(M2)
1 + ε

. (7)

In view of the above, the renormalizaion concept can be phenomenologically understood within
both multi-Pomeron exchange and QCD inspired models. In either case, the sε (s2ε) factor in
σt (σsd) arises from overlapping rapidity gaps. Renormalization eliminates this type of double

counting while preserving the (ξ, t) or (M 2, t) dependence of the cross section.
Integrating Eq. 7 over M2 and t yields a constant total single diffractive cross section:

σsd
s→∞→ 2σIPp

◦
exp

[
ε b0

2α′

]

= σ∞

sd ⇒ 16.8 ± 0.5 mb (see text). (8)

In a recent paper [8], it is suggested that since renormalization eliminates the overlaps caused
by wee-parton exchanges, σ∞

sd must be set equal to the value of σo of σt = σo eε. The global fit
of Ref. [7] yields σo = 16.8± 0.5 mb, where the uncertainty is obtained from the uncertainty in
the value of ε = 0.104 ± 0.002 quoted in the paper using the correlation between the errors in
σo and ε for fixed σt, which results in δσo = σo · ln s · δε.
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Figure 2: Cross sections d2σsd/dM2dt for p +
p(p̄) → p(p̄) + X at t = −0.05 (GeV/c)2 and√

s = 14, 20, 546 and 1800 GeV. Standard
(renormalized) flux predictions are shown as
dashed (solid) lines (from Ref. [9]).

Since renormalization converts s2ε ⇒ ln s
in the differential diffractive cross section, the
M2 distribution would be expected to have no
substantial explicit s-dependence. This pre-
diction is confirmed by the data, as shown in
Fig. 2. The straight line through the data
points is not a fit but is shown here to guide
the eye. A fit would have to take into ac-
count the dependence of the slope parameter
b on ξ, and this should be done by compar-
ing the data with a Monte Carlo simulation.
However, the difference that would be ob-
tained using such a comparison is estimated
to be small, and the M2-scaling behavior ex-
hibited in Fig. 2 does indeed correctly convey
the message that renormalization removes the
overlaps, which would cause the cross section
to follow the disconnected standard flux dot-
ted lines shown in the figure for the different
collision energies.

The renormalization technique used here
can be applied to all hadronic diffractive pro-
cesses, soft and hard alike, which in terms of
the final state event topology can be classified into three main categories: forward gap, central
gap, and multi-gap diffraction. Moreover, it can be applied to photoproduction and Deep Inelas-
tic Scattering diffractive processes, predicting the factorization breaking observed at the edges
of the available phase space, as outlined in the talk on Factorization Breaking in Diffraction

presented at this conference [10].

2 Total cross section

2.1 The superball model

Theoretical models predicting the total cross section at the LHC must satisfy all unitarity con-
straints. Available accelerator and cosmic ray data are routinely used to tune the parameters
of the models before extrapolating to LHC energies. This process is usually cumbersome, as it
involves fitting data which in some cases are not mutually compatible. Using all relevant pub-
lished data often leads to fits with a χ2/d.o.f. pulled by the outliers in the measurements, where
outliers are data points in clear disagreement with adjacent points from other measurements.
Here, we present a model in which these problems are minimized by an inherently unitarized
approach based on a saturated Froissart bound above a value of s = sF :

saturated Froissart bound : σt(s > sF ) = σt(sF ) +
π

so
· ln2 s

sF
. (9)

The saturation occurs in the wee-parton exchange governed by the value of the scale parameter
so that appears in the diffractive cross section in Eq. 3. This parameter is therefore interpreted
as the mass-squared of an object that is exchanged, and when inserted into the Froissart formula
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in place of the traditionally used m2
π should saturate the bound above the saturation energy√

sF = 22 GeV obtained in Sec. 1 from Fig. 1. As this exchanged object resembles a glue-ball,
we will refer to this normalization procedure as the SUPERglueBALL or superball model.

2.2 The total cross section at LHC

Predicting the total cross section at LHC using Eq. 9 would require knowledge of σ(sF ) at√
sF = 22 GeV. However, the cross section at this energy has substantial Reggeon exchange

contributions and also contributions from the interference between the nuclear and Coulomb
amplitudes. A complete description would have to take all this into consideration, using the
Regge theory amplitudes to describe the Reggeon exchanges, and dispersion relations to obtain
the real part of the amplitude from the measured total cross sections up to Tevatron energies.
Here, we apply a strategy that bypasses all these complications.

Strategy:

• Use the Froissart formula as a saturated cross section rather than as a bound above sF :

σt(s > sF ) = σt(sF ) + π
m2 · ln2 s

sF

• This formula should be valid above the knee in σsd vs.
√

s at
√

sF = 22 GeV (Fig. 1) and
therefore valid at

√
s = 1800 GeV.

• Use m2 = so in the Froissart formula multiplied by 1/0.389 to convert it to mb−1.

• Note that contributions from Reggeon exchanges at
√

s = 1800 GeV are negligible, as can
be verified from the global fit of Ref. [7].

• Obtain the total cross section at the LHC:

σLHC
t = σCDF

t +
π

so
·
(

ln2 sLHC

sF
− ln2 sCDF

sF

)

For a numerical evaluation of σLHC we use as input the CDF cross section at
√

s = 1800 GeV,
σCDF

t = 80.03 ± 2.24 mb, the Froissart saturation energy
√

sF = 22 GeV, and the parameter
so. In Sec. 1, it it was mentioned that a value of so = 1.0 ± 0.4 GeV2 was extracted from the
s-dependence of the single-diffractive cross section. The extraction of so from the data assumed
ε = 0.115±0.008, which was the average of the CDF measurements at 540 and 1800 GeV. There
is, however, a very strong correlation between the values of ε and so through the relationship
displayed in Eq. 6. Using a more accurate value of ε extracted in [7], ε = 0.104 ± 0.002,
yields sCMG

o = 3.7 GeV2. The resulting prediction for the total cross section at the LHC at√
s = 14 000 GeV is:

σLHC
14 000 GeV = (80 ± 3) + (29 ± 12) = 109 ± 12 mb.

This result is in good agreement with the value of σCMG
t 114 ± 5 mb obtained by the global

fit of Ref. [7] using an eikonal approach, where the uncertainty is estimated from that in the
value of the parameter ε given in the paper.
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The agreement between σsuperball
t = 109 ± 12 mb and σcmg

t = 114 ± 5 mb is remarkable,
but there are two items to bear in mind: (a) a value of so = 1 GeV2 was used in the CMG
eikonalized evaluation of the cross section, since the result of Ref. [5] was already known by
the authors of Ref. [7]; (b) the sensitivity of the present result on the value of ε cannot be
overemphasized, and as is the case with the determination of sF , it represents a limiting factor
on the accuracy that can be achieved in the prediction of σLHC.

3 Summary and conclusion

The single-diffractive and total pp cross sections at the LHC are predicted in a phenomenolog-
ical approach that obeys all unitarity constraints. The approach is based on the renormaliza-
tion model of hadronic diffraction, which corrects the double-counting caused by overlapping
diffractive rapidity gaps while preserving the dependence of the differential cross section on the
fractional momentum loss, ξ, and 4-momentum transfer squared, t, of the diffracted proton.
The renormalization procedure replaces the s2ε dependence of the differential diffractive cross
section with a ln s dependence and leads to an asymptotically constant single-diffractive cross
section as s → ∞ of σ∞

sd = 16.8 ± 0.5 mb.
The total cross section at the LHC is estimated using a saturated Froissart bound expression

σt(s > sF ) = σt(sF ) + π/so · ln2(s/sF ), where the parameters so and sF are experimentally
determined from the dependence of the single-diffractive cross section on

√
s. Encoring σt to the

CDF measured value at
√

s = 1800 GeV, where Reggeon exchange contributions are negligible,
serves to normalize the formula yielding σLHC

t = 109± 12 mb, which is in good agreement with
the global fit prediction of σCMG

t = 114 ± 5 mb of Ref. [7].
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