Diffractive, Elastic, and Total pp Cross Sections at the LHC Konstantin Goulianos The Rockefeller University

Contents

References □ Single diffraction → Renormalization → triple-Pomeron coupling \rightarrow ratio of α'/ϵ Total cross section The SUPERBALL cross section cross section from a global fit The elastic cross section Discussion

	http://phys	sics.rockefell	ler.edu/dind	o/my.html
--	-------------	----------------	--------------	-----------

- CDF PRD 50, 5518 (1994) σ^{el} @ 1800 & 546 GeV
- CDF PRD 50, 5535 (1994) σ^D @ 1800 & 546 GeV
- CDF PRD 50, 5550 (1994) σ^T @ 1800 & 546 GeV
- KG-PR Physics Reports 101, No.3 (1983) 169-219
- KG-95 PLB 358, 379 (1995) Renormalization

Erratum: PLB 363, 268 (1995)

CMG-96 PLB 389, 176 (1996) Global fit to p[±]p, π[±], K[±]p

Single diffraction

KG-95

Standard Regge theory

The triple-Pomeron coupling in QCD

$$\frac{d^2\sigma}{dt \ d\Delta y} = N_{gap} \cdot \underbrace{C \cdot F_p^2(t) \cdot \left\{ e^{(\varepsilon + \alpha' t)\Delta y} \right\}^2}_{P_{gap}(\Delta y, t)} \cdot \kappa \cdot \left\{ \sigma_o \ e^{\varepsilon \ \Delta y'} \right\}}_{\sigma_T = \sigma_o \cdot s^{\varepsilon}}$$

Experimentally: KG&JM, PRD 59 (114017) 1999

$$\kappa = \frac{g_{PPP}}{\beta_{Pp}} = 0.17 \pm 0.02$$

Color factor:
$$\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18$$

gluon quark
fraction fraction

σ_{sd} renormalized

LISHEP 2009, Brazil, Jan 19-24

KG-95

Renormalization and Pumplin bound

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = N_{gap} \cdot \underbrace{C \cdot F_{p}^{2}(t) \cdot \left\{e^{(\varepsilon + \alpha' t)\Delta y}\right\}^{2}}_{P_{gap}(\Delta y, t)} \cdot \kappa \cdot \left\{\sigma_{o} \ e^{\varepsilon \Delta y'}\right\}$$

$$N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) \ d\Delta y \ dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}$$

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = C'' \left[e^{\varepsilon(\Delta y - \ln s)} \cdot \ln s\right] e^{(b_{0} + 2\alpha'\Delta y)t}$$

grows slower than s^{ϵ}

 \rightarrow The Pumplin bound is obeyed at all impact parameters

$$\sigma_{sd}^{T}$$
 (s $\rightarrow\infty$) and ratio of α'/ϵ

arXiv:0812.4464v1[hep-ph] submitted to PLB

9

The value of s_o - a bird's-eye view

The value of s_o -limited edition

The total cross section

□ Froissart-Martin bound:
$$\sigma \le \frac{\pi}{m^2} \cdot \ln^2 s$$
 (s in GeV²)
□ For m² = m_π² → $\pi / m^2 \sim 10^4$ mb – very large!

□ But if $m^2 = s_0 = (mass)^2$ of a large **SUPERglueBALL**, a ln^2s behavior *ala* Froissart-Martin an be reached at a much lower s-value, s_{sb} ,

$$\Rightarrow \sigma(s > s_{sb}) = \sigma(s_{sb}) + \frac{\pi}{s_o} \cdot \ln^2 \frac{s}{s_{sb}}$$

Determine
$$s_{sb}$$
 and s_{o} from σ_{T}^{SC}

□ Show that at \sqrt{s} = 1.8 TeV Reggeon contributions are negligible

Get cross section at the LHC from

$$\sigma^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{\mathbf{s_0}} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_{\text{F}}} - \ln^2 \frac{s^{\text{CDF}}}{s_{\text{F}}} \right)$$

12

The superball σ^T

Froissart-Martin bound

$$\sigma \leq \frac{\pi}{m^2} \cdot \ln^2 s$$

□ Valid above "knee" at \sqrt{s} = 22 GeV and therefore at \sqrt{s} = 1.8 TeV

Use superball mass

→ $m^2 = s_0 = (1\pm 0.2) \text{ GeV}^2$

At \sqrt{s} 1.8 TeV Reggeon contributions are negligible (CMG-96))

$$\sigma_{14000}^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{s_0} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) = (80.03 \pm 2.24) + (39 \pm 6) = 119 \pm 6 \text{ mb}$$

compatible with CGM-96 global fit result of 114 ± 5 mb (see next 2 slides)

13

Global fit to $p^{\pm}p$, π^{\pm} , $K^{\pm}p$ x-sections

LISHEP 2009, Brazil, Jan 19-24

DIFFRACTIVE AND EXCLUSIVE PRODUCTION AT CDF II

K. GOULIANOS 14

σ^{T} at LHC from global fit

K. GOULIANOS 15

The elastic cross section

D Optical theorem: obtain imaginary part of the amplitude from σ^T

D Dispersion relations: obtain real part of the amplitude from σ^T

□ Add Coulomb amplitude

Get differential elastic cross section and ρ-value

DISCUSSION

LISHEP 2009, Brazil, Jan 19-24 DIFFRACTIVE AND EXCLUSIVE PRODUCTION AT CDF II K. GOULIANOS 17

