

Workshop on Low x Physics Lisbon, Portugal, 28 June - 1 July, 2006

Contents

- > Introduction & Run I results
- > Run II results
 - ✓ Exclusive Production
 - ✓ Diffractive structure function

p-p Interactions

Non-diffractive:
Color-exchange

Diffractive:

Colorless exchange with vacuum quantum numbers

rapidity gap

Incident hadrons acquire color and break apart

Incident hadrons retain their quantum numbers remaining colorless

pseudo-DECONFINEMENT

Goal: understand the QCD nature of the diffractive exchange

Rapidity Gaps

Momentum loss fraction

$$\xi = \frac{\Delta P_L}{P_L} = \frac{M_X^2}{S}$$

$$\left(\frac{d\sigma}{d\Delta\eta}\right)_{t=0} \approx constant \Rightarrow \frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \Rightarrow \frac{d\sigma}{d\xi} \sim \frac{1}{\xi}$$

Diffraction @ CDF

Run 1-0 (1988-89)

Elastic, single diffractive, and total cross sections

@ 546 and 1800 GeV

Roman Pot Spectrometers CDF-I

Roman Pot Detectors

Scintillation trigger counters

- Wire chamber
- Double-sided silicon strip detector

Roman Pots with Trackers up to $|\eta| = 7$

- Total cross section
- > Elastic cross section
- > Single diffraction

 $\sigma^{\text{tot}} \sim S^{\epsilon}$

 $d\sigma/dt \sim exp[2\alpha' lns] \rightarrow shrinking forward peak$

Breakdown of Regge factorization

Renormalization

$$\frac{d^2\sigma_{SD}}{dtd\xi} = (f_{IP/p}(t,\xi)) \bullet \sigma_{IP-\overline{p}}(M_X^2)$$

Pomeron flux 🗗

- Regge theory σ_{SD} exceeds σ_{T} at $\sqrt{s} \approx 2 \text{ TeV}.$
- * Renormalization Pomeron flux integral (re)normalized to unity

KG, PLB 358 (1995) 379

$$\int\limits_{\xi_{min}}^{0.1}\int\limits_{t=-\infty}^{0}f_{IP/p}(t,\xi)\;d\xi\,dt=1$$

A Scaling Law in Diffraction

KG&JM, PRD 59 (1999) 114017

→ Independent of S over 6 orders of magnitude in M²!

Factorization breaks down so as to ensure M²-scaling!

The QCD Connection

The exponential rise of $\sigma_T(\Delta y')$ is due to the increase of wee partons with $\Delta y'$

(E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

Total cross section: power law increase versus S

Elastic cross section: forward scattering amplitude

Single Diffraction in QCD

(KG, hep-ph/0205141)

$$\left. \frac{d\sigma}{dM^2} \right|_{REGGE} \propto \frac{s^{2\epsilon}}{(M^2)^{1+\epsilon}}$$

2 independent variables: $t, \Delta y$

$$\frac{d^2\sigma}{dt\ d\Delta y} = C \bullet F_p^2(t) \bullet \left\{ e^{(\varepsilon + \alpha' t)\Delta y} \right\}^2 \bullet \kappa \bullet \left\{ \sigma_o e^{\varepsilon \Delta y'} \right\}$$

Gap probability

$$\sum_{e}^{4} \frac{1}{2\varepsilon \Delta y} \longrightarrow \int_{\Delta y_{\min}}^{\Delta y = \ln s} s^{2\varepsilon \Delta y} \approx s^{2\varepsilon}$$

factor

Renormalization removes the s-dependence → SCALING

Multi-gap Renormalization

(KG, hep-ph/0205141)

i = 1 - 5

$$\Delta y_1$$
 Δy_2 Δy_2 Δy_2

5 independent variables

$$t_1 \left(\Delta y = \Delta y_1 + \Delta y_2 \right) t_2$$

color factors

$$\frac{d^{5}\sigma}{\prod dV_{i}} = C \times F_{p}^{2}(t_{1}) \prod_{i=1-2} \left\{ e^{(\varepsilon + \alpha' t_{i})\Delta y_{i}} \right\}^{2} \times \kappa^{2} \left\{ \sigma_{o} e^{\varepsilon(\Delta y'_{1} + \Delta y'_{2})} \right\}$$

Gap probability

$$\sim e^{2\varepsilon\Delta y}$$

Sub-energy cross section (for regions with particles)

$$\int_{\Delta y = \ln s}^{\Delta y = \ln s} s^{2\varepsilon \Delta y} \approx s^{2\varepsilon}$$

Same suppression as for single gap!

CDF-IA, IB

Central and Double Gaps

- **□ Double Diffraction Dissociation**
 - **➤** One central gap

- **□ Double Pomeron Exchange**
 - > Two forward gaps

- **■** SDD: Single+Double Diffraction
 - ➤ One forward + one central gap

Central & Double-Gap CDF Results

CDF-IC

HARD DIFFRACTION

- Diffractive fractions
- Diffractive structure function
 - → factorization breakdown
- Restoring factorization
- Hard diffraction in QCD

 $JJ, W, b, J/\psi$

Diffractive Fractions

$$\overline{p}p \rightarrow (+X) + \text{gap}$$

Fraction: SD/ND ratio at 1800 GeV

	Fraction(%)
W	1.15 (0.55)
JJ	0.75 (0.10)
b	0.62 (0.25)
J/ ψ	1.45 (0.25)

All ratios ~ 1%

→ ~ uniform suppression
 ~ FACTORIZATION!

Diffractive Structure Function:

Breakdown of QCD Factorization

 β = momentum fraction of parton in Pomeron

The diffractive structure function at the Tevatron is suppressed by a factor of ~10 relative to expectation from pdf's measured by H1 at HERA

Similar suppression factor as in soft diffraction relative to Regge expectations!

Restoring QCD Factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

MiniPlug Calorimeter

About 1500 wavelength shifting fibers of 1 mm dia. are 'strung' through holes drilled in $36x_4^{\frac{1}{4}}$ " lead plates sandwiched between reflective Al sheets and guided into bunches to be viewed individually by multi-channel photomultipliers.

Run II Results

- Diffractive structure function
 - > Q² dependence
 - > t dependence
- Exclusive production
 - > dijet
 - > diphoton

Diffractive Dijet Signal

- Bulk of data taken with RPS trigger but no working RPS tracking
- Extract ξ from calorimetric information
- Calibrate calorimetric ξ using limited sample of RPS tracking data
- Subtract overlap background using a rescaled dijet event sample
- Verify diffractive ξ range by comparing ξ^{RPS} with ξ^{CAL}

$$\xi^{CAL} = \frac{\sum_{\text{all towers}} E_T \ e^{-\eta}}{\sqrt{s}}$$

Overlap events: mainly ND dijets plus SD low & RPS trigger

ξ^{CAL} Calibration

Dijet Properties

Low x 2006, Lisbon, Portugal, June 28 – July 2

Alignment of RPS using Data

maximize the |t|-slope

⇒ determine X and Y offsets

Diffractive Structure Function: Q² dependence

Small Q² dependence in region 100 < Q² < 10,000 GeV²

⇒ Pomeron evolves similarly to proton!

Diffractive Structure Function: t- dependence

Fit $d\sigma/dt$ to a double exponential:

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

- > No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < 10,000 GeV² across soft and hard diffraction!

EXCLUSIVE PRODUCTION

Measure exclusive jj & $\gamma\gamma$

Calibrate predictions for H production rates @ LHC

Bialas, Landshoff, Phys.Lett. B 256,540 (1991) Khoze, Martin, Ryskin, Eur. Phys. J. C23, 311 (2002); C25,391 (2002);C26,229 (2002) C. Royon, hep-ph/0308283 B. Cox, A. Pilkington, PRD 72, 094024 (2005) OTHER.....

KMR: $\sigma_{H}(LHC) \sim 3 \text{ fb}$ S/B ~ 1 if Δ M ~ 1 GeV

Clean discovery channel

Search for exclusive dijets: Measure dijet mass fraction

$$R_{jj} = \frac{M_{jj}}{M_{x} (all calorimeters)}$$

Look for signal as $M_{ii} \rightarrow 1$

Search for exclusive $\gamma\gamma$

Search for events with two high E_{T} gammas and no other activity in the calorimeters or BSCs

Exclusive Dijet and yy Search

b-tagged dijet fraction

Exlusive b-jets are suppressed by J_z = 0 selection rule

Systematic uncertainties under study: tune in soon for results!

Exclusive yy

Based on 3 events observed: $\sigma_{MEAS} = 0.14^{+0.14}_{-0.04}(stat) \pm 0.03(syst)$ pb

Good agreement with KMR: $\sigma_{KMR} = 0.04 \pm 0.04 (\times 2 - 3) \ pb$

Dijets: Data vs MC

ExHuME (KMR): gg→gg process

→ uses LO pQCD

Exclusive DPE (DPEMC)→ non-pQCD based on Regge theory

- ⇒ Excess of events at high R_{jj} is well described by both exclusive dijet production models
- \Rightarrow Currently investigating the dependence of the cross section on second jet E_T to differentiate between the two models

Exclusive Dijet Signal

COMPARISON

inclusive data vs MC @ b/c-jet data vs inclusive

CDF Run II Preliminary

CDF Run II Preliminary

Exclusive $\gamma\gamma$ /ee Search

QED process: cross-check to exclusive $\gamma\gamma$

- √ (anti)proton not detected
- \checkmark require 2 EM showers (E_T>5 GeV, |h|<2)
- ✓ veto on all BSCs and all calorimetery except for the 2 EM showers
- ✓ L~530 pb⁻¹ delivered → L_{effective}=46 pb⁻¹
- √⇒ 19 events with 2 EM showers + "nothing" [above threshold]

Exclusive ee Search

control sample for $\gamma\gamma$ search

⇒16 candidate events found background 2.1 +0.7 events

$$\sigma_{\text{MEASURED}} = 1.6^{+0.5}_{-0.3} \text{ (stat)} \pm 0.3 \text{ (sys) pb}$$

good agreement with LPAIR: $\sigma_{PA/R} = 1.711 \pm 0.008 \, pb$

Exclusive yy Search

⇒ 3 candidate events found background: 0.0 +0.2 events

$$\sigma_{\text{MEASURED}} = 0.14^{+0.14}_{-0.04} \text{ (stat)} \pm 0.03 \text{ (sys) pb}$$

good agreement with KMR:

$$\sigma_{KMR} = 0.04 \pm (\times 2 - 3) \ pb$$

 \Rightarrow σ_{H} ~ 10 fb (if H exists) within a factor ~ 2-3 , higher in MSSM

Dark Energy

Non-diffractive interactions

Rapidity gaps are formed by multiplicity fluctuations:

$$P(\Delta y) = e^{-\rho \Delta y}, \quad \rho = \frac{dN_{particles}}{dy}$$

 $P(\Delta y)$ is exponentially suppressed

Diffractive interactions

Rapidity gaps at t=0 grow with Δy :

$$P(\Delta y)\big|_{t=0} \sim e^{2\epsilon \Delta y}$$

28: negative particle density!

Gravitational repulsion?

Summary

TEVATRON - what we have learnt

- \rightarrow M² scaling
- > Non-suppressed double-gap to single-gap ratios
- → Pomeron: composite object made up from underlying pdf's subject to color constraints

LHC - what to do

- → High mass (→ 4 TeV!) and multi-gap diffraction
- Exclusive production
 - → Reduced bgnd for std Higgs to study properties
 - → Discovery channel for certain Higgs scenarios

BACKUP

Diffractive DIS: two models

Particle-like Pomeron

Color reorganization

what is the Pomeron structure?

probing the proton structure!

Inclusive vs Diffractive DIS

KG, "Diffraction: a New Approach," J.Phys.G26:716-720,2000 e-Print Archive: hep-ph/0001092

DSF: H1 vs ZEUS

Diffractive Dijets @ Tevatron

$$F^{D}(\xi, x, Q^{2}) = N_{renorm} \frac{1}{\xi^{1+2\varepsilon}} \cdot F(x/\xi, Q^{2})$$

$$_{\rm rm} = \int_{\xi_{\rm min}}^{1} \frac{\mathrm{d}\xi}{\xi^{1+2\epsilon}}$$

$$\left. \left. R \frac{SD}{ND} \left(x \right) \right|_{\text{renorm}} \propto \frac{1}{\xi^{1 - \lambda \left(\varrho^{2} \right)}} \cdot x^{-2\varepsilon_{g}}$$

 $\varepsilon_q \sim 0.2 \Rightarrow$ Agreement with data!

ξ-dependence: Inclusive vs Dijet

 $\frac{d\sigma_{inel}}{d\xi} \propto constant$

Pomeron dominated

Gap Between Jets

Diffraction from the Deep Sea

10 ⁻²

10 ⁻¹

10 -2

10 -3

 \mathbf{x}^{1}