Diffractive and exclusive dijets at CDF FP@LHC, Manchester, UK, 8-12 Dec 2007 Konstantin Goulianos The Rockefeller University

Hadronic Interactions

<u>Non-diffractive:</u> Color-exchange

Diffractive:

Colorless exchange with vacuum quantum numbers

<mark>rapidity gap</mark>

Incident hadrons acquire color and break apart

Incident hadrons retain their quantum numbers remaining colorless

<u>Goal</u>: understand the QCD nature of the diffractive exchange

Diffraction at CDF

FP@LHC, UK 8-12 Dec 2007 Diffractive and exclusive dijets at CDF

K. Goulianos 4

M²-scaling

KG&JM, PRD 59 (1999) 114017

Factorization breaks down so as to ensure M²-scaling!

FP@LHC, UK 8-12 Dec 2007

DIFFRACTIVE STRUCTURE FUNCTION

Systematic uncertainties due to energy scale and resolution cancel out in the ratio

Diffractive Structure Function Breakdown of QCD Factorization

$\overline{p}p \rightarrow \overline{p} + dijet + X$

FP@LHC, UK 8-12 Dec 2007

ξ-dependence: Inclusive vs Dijet

Multigap Diffraction Restoring Factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

FP@LHC, UK 8-12 Dec 2007 Diffractive and exclusive dijets at CDF

E_T distributions

FP@LHC, UK 8-12 Dec 2007

Diffractive and exclusive dijets at CDF

K. Goulianos 11

Diffractive Structure Function: Q² dependence

Diffractive Structure Function: t- dependence

Fit d σ /dt to a double exponential: $F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$

- > No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < 4,500 GeV² across soft and hard diffraction!

Luminosity Run - Jan 2006 → with dedicated diffractive triggers ←

Diffraction for All

<u>Run I</u>

- > Suppression of single gap diffraction
- > M^2 scaling: $d\sigma/dM^2$ independent of s
- Non-suppressed double-gap to single-gap ratios

Run II

- Diffractive structure function vs x_{Bj}, Q², and t: similar to proton structure function
- > Diffractive t distributions: slope independent of Q²

Composite Pomeron made up from proton pdf's http://physics.rockefeller.edu/dino/myhtml/talks/lathuile07.pdf

EXCLUSIVE DIJET PRODUCTION

FP@LHC, UK 8-12 Dec 2007 Diffractive and exclusive dijets at CDF

DATA SAMPLES

FP@LHC, UK 8-12 Dec 2007

SEARCH FOR THE SIGNAL

An exclusive di-jet candidate

Excess over inclusive DPE dijet MCs observed at high R_{ij}

Examined for consistency with exclusive dijet signal

Data vs MC in bgd Region B

FP@LHC, UK 8-12 Dec 2007

Rjj and η^{\star} in Signal Region A

Underlying Event: Data vs MC

FP@LHC, UK 8-12 Dec 2007

Diffractive and exclusive dijets at CDF

K. Goulianos 21

Data Compared to MC Predictions

Heavy Flavor Dijets

HF suppressed at high Rjj

Incl/MC & Incl/HF agree

Extracted Mjj Distribution

Extract Mjj distribution using ExHuME normalized to data $\sigma_{ii}^{excl}(E_T)$

The Roman-Pot Detectors at CDF

to CDE

central detector

The three Roman pots each contain detectors consisting of:

- Trigger scintillation counter 2.1x2.1x0.8 cm3
- 40 X + 40 Y fiber readout channels
- Each consists of 4 $(\rightarrow bigger signal)$ clad scintillating fibers 0.8x0.8 mm² (new technology at the time)
- X,Y each have 2 rows of 20 fibers spaced 1/3 fiber width apart for improved position resolution (three times better than with a single row)

Path of the Antiproton through the Tevatron Magnets

· Dipole magnets bend recoil antiprotons which have lost momentum towards the inside of the Tevatron ring, into the Roman pots

Y fibers

To MAPM

. Knowledge of the beam optics, the collision vertex position, and the antiproton track position and angle in the Roman-pot detectors are used to reconstruct the kinematics of the diffractive antiproton

