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Breakdown of QCD factorization
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DIFFRACTIVE DIJETS

Non-Diffractive  Single-Diffractive FND (X )
(ND) (SD) B)

Systematic uncertainties due o energy scale and resolution
cancel out in the ratio
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Diffractive Structure Function:

Xgj @and Q2 dependence

CDF Run II Prallmmary
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Small Q2 dependence in region 100 < Q? < 10,000 GeV?
| = Pomeron evolves as the protonl! |
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Diffractive Structure Function:

t- dependence

CDF Run Il Preliminary

CDF Run Il Preliminary — 2
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Fit do/dt to a double exponential:
F=0.9 €401

» No diffraction dips > Obtain slope normalization

> No Q2 dependence in slope » Extend range to |t| ~ 4 GeV?
from inclusive to Q2~104 GeV/?2

Remaining work:
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Diffractive W/Z production

» Diffractive W production » Production by gluons
probes the quark content IS suppressed by a
of the Pomeron factor of ag, and can

be distinguished from
quark production by
an associated jet

— To leading order,
the W is produced
by a quark in the
Pomeron
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Diffractive W/Z - motivation

* In Run I, combining diffractive

dijet production with diffractive

W production was used to
determine the quark/gluon
content of the Pomeron ===

* In Run ll, we aim at
determining the diffractive
structure function for a more
direct comparison with HERA.

 To accomplish this we use:
» New forward detectors
» New methodology
» More data
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D (MEASURED / PREDICTED)

o
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Phys Rev Lett 78, 2698 (1997)

Fraction of W events due to SD

Rw=[1.15+0.51(stat)+£0.20(syst) ]%
for £<0.1 integrated over t
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GLUON FRACTION IN POMERON
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Diffractive W/Z analysis

Using RPS information:

L No gap survival probability problem

obtaining n, using the equation:

E. _
&RPS _écal _ _Te Ny where écal

Vs

This allows determination of:

 No background from gaps due to multiplicity fluctuations

 The RPS provides accurate event-by-event £ measurement
 Determine the full kinematics of diffractive W production by

Eq e
2%

towers

> W mass
> Diffractive structure function
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W/Z selection requirements
Standard W/Z selection

ES(ph) > 25 GeV ES'(p4') > 25 GeV
E. >25GeV ES () > 25 GeV
40 <My <120 GeV 66 <M” <116 GeV
| Z,. |<60cm | Z [< 60 cm

Diffractive W/Z selection

ad RPS trigger counters - MIP

1 RPS track - 0.03< £ <0.10, |t|<1
d W=>» 50 < M, (ERPS £cal) < 120
d Z = &< (.1
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Reconstructed Diffractive W-Mass

Entrie= 50
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Rejection of Multiple Interactions

W—elnvy CDF Run ll Preliminary
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Diffractive W/Z results

RW (0.03 < £ < 0.10, |t|<1)= [0.97 + 0.05(stat) + 0.11(syst)]%
Run |: RW =1.1520.55 % for £<0.1=>» estimate 0.97+0.47 % in 0.03 <& < 0.10 & [t|<1)

RZ(0.03 < x < 0.10, |t|<1)= [0.85 + 0.20(stat) + 0.11(syst)]%

CDF/D@ Comparison —Run | (£<0.1)

CDF PRL 78, 2698 (1997) D@ Phys Lett B 574, 169 (2003)
w=[1.15+£0.51(stat)£0.20(syst)]% w=[5.1+£0.51(stat)+£0.20(syst)]%
gap acceptance A%r=0.81 gap acceptance A%r=(0.21+4)%
uncorrected for A% > uncorrected for Asar=>»
R%Y=(0.93+£0.44)% RW=[0.89+0.19-0.17 1%
(A92P calculated from MC) R4=[1.44+0.61-0.52 1%

Stay connected for FP,,
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Exclusive Dijet and Higgs Production
Phys. Rev. D 77, 052004
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Underlying Event (UE)
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The data and POMWIG+Background distributions in the transverse A¢-region
relative to the di-jet axis agree, indicating that the UE is correctly modeled.
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Inclusive DPE VV/LRGp: Data vs. MC

ExHUME eexclusive MC models> DPEMC

(2] C —
b - F =15.0+1.2% e |DPE data (stat. only) B F =158+1.3% e |DPE data (stat. only)
§ 600 ““ (stat.only) | POMWIC: CDFeH 600 (statJ.ronIy) — EOTW'GSPDEF?;TEMC)
- [ ExHu xclusive
W eoof Best fit to data 5001 Best fit to data
- 3.6 < [1gq,l < 5.9 - 3.6 < [Nyl < 5.9
400:— _______ EjTet1,2 > 10 GeV 400:— EJ'Tet1,2 >10 GeV
300C ¥ Ef°<5Gev 300l 4 B <5GeV
200? (a) 200? (b) ,
100— 100
Ol 1. . .. Qb—re
0 0.2 04 0.6 0.8 1 RJJ 0 0.2 04 0.6 0.8 1
ExHUME (KMR): gg—gg process DPEMC: exclusive DPE MC
(based on LO pQCD) based on Regge theory

Shape of excess of events at high R;
Is well described by both ExHUME & DPEMC — but...
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ExHUME vs. DPEMC and vs. data

3 E e Data corrected to hadron level
o ' ExHuME
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Heavy Flavor suppression vs. Inclusive Signal

HF suppression HF suppression vs. Inc
% 1 5_ DPE data (Displaced Track) g r e Fexck—HF =1- I: HF/in J|r<F|-||=Jr |>IR 04:|

@ Tl |:|systematic uncertainty E 0.8 ¢ Fexeime = 1-[MC,,/ Data,,, ]

/E : TJ; O_Bilzl Foie._nr SYStematic uncertainty X
s | 5

L 1 -

| Mc,,, = POMWIG + Background
____________________________________________________________ L (CDF&H1)
0-4_normalized to Data, at R.<0.4
i ] *
IL B -
0.5 E’et > 10 GeV

@ | Iﬂ,etl <15
1 ‘ 1 | 1 |

! ! I T N R T N
0 02 0.4 0.6 0.8 1

I Ry = M; /My I R =M, /My
>

Invert HF vertically and compare with 1-MC/DATA
=» good agreement observed
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Exclusive Dijet x-section vs. M.,

102 B ExHUME (hadron level)
§ | Default
I - ® Derived from CDF
P § 10? Run Il (Er )
Qo C systematic uncertainty
C 1¢
E H— 1E
= |
SIS T F aczs
5 - n < 2.
102 — 3.6 <My, <59
- 0.03 < (:E < 0.08
10-3_|...|...|...|...|...|...|...|
20 40 60 80 100 120 140 160

M. (GeV/c?)
line: ExXHUME hadron-level exclusive di-jet cross section vs. di-jet mass

points: derived from CDF excl. di-jet x-sections using ExHUME

Stat. and syst. errors are propagated from measured cross section
uncertainties using M;; distribution shapes of ExHUME generated data.
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Exclusive Dijet x-section vs. M.,

102 B ExHUME (hadron level)
§ | Default
I - ® Derived from CDF
P § 10? Run Il (Er )
Qo C systematic uncertainty
C 1¢
E H— 1E
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SIS T F aczs
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102 — 3.6 <My, <59
- 0.03 < (:E < 0.08
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M. (GeV/c?)
line: ExXHUME hadron-level exclusive di-jet cross section vs. di-jet mass

points: derived from CDF excl. di-jet x-sections using ExHUME

Stat. and syst. errors are propagated from measured cross section
uncertainties using M;; distribution shapes of ExHUME generated data.
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The FP420 Project

e alignment: study the use of our alignment method in FP420;
e backgrounds: study the backgrounds expected using our CDF experience;
e physics: explore physics aspects that may lead to discoveries.

An example of the latter is the measurement of the parton distribution density of the
proton in the very low-x region accessible with the forward detectors.

 ME=%E,S
Central Detector System
’ Where &, , are the fractional momentum
losses of the outgeing protons
Leading proton

detector

FP420 project: http://www.fp420.com/

Measure protons at 420 m from the IP during normal high luminosity
running to be used in conjunction with CMS and ATLAS

Feasibility study and R&D for Roman Pot detector development

» Physics aim :pp — p+ X + p (Higgs, New physics, QCD studies)
> Status: Completed Jun 2008: arXiv:0806.0302
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CENTRAL RAPIDITY GAPS

CDF I

Run 211073
p JET Event 85601
E Rapidity
g Ga
p momentum & | l‘ P
transfer large
JET o

O Measure AY9® width and position
to differentiate among models. @ CCOOE00BEOCEE00 @

Ay®® = Ay = BFKL :

Ay®® < Ay’ => composite

Ay

ijet_ ~ 8 —,.
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Low Luminosity Run

= January 2006: data with dedicated diffractive triggers €

2002-303 data ~1.5E31 ., Low Lum ~0.5E30
\o* CDF Run Il Preliminary - P pll Ty
] —— RPS +.Jui5 R L .| —— RPS (witrackh+Jets - rescaled [0
E Wkl — RPS (witrack)+let5 - rescaled Foo i E LUl p— Jeis (Ey =5 GeV) - rescaled
2 —-—msl_l:.‘,"'hsﬁfﬂ_-__rm-hu Rl o -
0 . e
.
.
1 ;‘ .-: B
“:u“’ 1;‘ 1w’ 1.... L 10
CAL
%
t gcal .

single diffraction

0.03<£<0.1 diffractive dijet overlapped with MB soft diffraction
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. . Nucl. Instrum. Meth, A518 (2004) 42.
M 181 P I U g J etS Nucl. Instrum. Meth, A496 (2003) 333.

_m_IIIIIIIIIIIIIIIII o N I T O I |
0 3 10 15

iet cone radius
R =0.4(0.7)
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MiniPlug Jet Properties

E_‘_je’rl,Z >2 GeV, 3.5« |n |jeTl,2< 5.1, nje‘rl.nje‘rz <0

i
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1u£
1DE"- 5 70 ",
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MP Jet Data with TOF Veto

CCAL Tower vs TOF Counter MuRtiplicity

) CDF Il Preliminary
i 20
S 80
=
% sof-| Data with TOF veTo L H‘i';',';' ‘L.*'..:. '.: s
o 50
g 40
30
3 =
10F
ol

Tﬂ‘gﬂuum-rﬁulilﬂlclw
The number of CCAL towers with ET>200 MeV is suppressed by the TOF veto
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A¢ for MP sMP_ jets with CCAL gap

CDF Il Preliminary

Number of events

(2]
[=]
=
IIII| III|IIII|IIII|IIII|IIII|IIII|I

o5 1 15z 25 3.
Ap=1ig 1y o1o] (rad)

The distribution of A for MP sMP , _ jets of E;>2 GeV with a gap in the

central calorimeter (CCAL). The events at low values of A are presumed

to be due to an imbalance caused by the E_ of PCAL, and PCAL,

towers from the underlying event,

=2
=
th
e
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CCAL « PCAL ?/ . Gap

A¢ for MP_sMP_ jets with CCAL+PCAL - gap
CDF 1l Preliminary

CCALePCAL. gap: -3 321 1

...... CCALsPCAL, gap: -1.1<<3.3

Number of events
g

0 0.5 1 1.5

‘ a¢=|¢,f;,’:¢?.ﬂ| (rad)
The distribution of A for MP *MP __ jets of E >2 GeV with a gap in the central calorimeter
(CCAL) plus a gap in one of the Plug calorimeters PCAL(p) or PCAL(pbar). The events at low
values of A are presumed to be due to the imbalance caused by the E of PCAL(p)

or PCAL(pbar) towers from the underlying event. The agreement between the two
distributions indicates that detector and beam conditins effects are similar between positive
and negative eta-values.
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CCAL+ PCAL, « PCAL .. Gap

Ad for MP_+MP_ jets with CCAL.PCAL gap

CDF Il Preliminary

33 <n’®<3.3

Number of events

30
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JIIIlIIIIlIIIIlIIIIlIIII|IIII|

T R ¥ S S T S
AD=], 44170, o] (rad)
The distribution of & for MP *MP ,  jets of E>2 GeV with a gap in the

central calorimeter (CCAL) plus a gap in both Plug calorimeters -
PCAL(p) and PCAL(pbar).
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CCAL+ PCAL, « PCAL .. Gap

Ad for MP_+MP_ jets with CCAL.PCAL gap

CDF Il Preliminary

33 <n’®<3.3

Number of events

30

20

10

JIIIlIIIIlIIIIlIIIIlIIII|IIII|

T R ¥ S S T S
AD=], 44170, o] (rad)
The distribution of & for MP *MP ,  jets of E>2 GeV with a gap in the

central calorimeter (CCAL) plus a gap in both Plug calorimeters -
PCAL(p) and PCAL(pbar).
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Gap fraction in CCAL gap

Gap Fraction in events with a CCAL gap

€ | CDF Il Preliminary o D
‘é‘ 1 E_ —— MP,sMP. Jats, Ef'“> 2GeV
o~ C R =Ny Ny, —+— MP_sMP; Jois, B} > 4Gav
o =
AL , 3.5<| ™" ¢ <51
2§1 ’ = CCAL gap e
n:% ﬂ: - required
= 2
10 ==
107
104 l %
0 *

I“T
AN M max Mimin

The distribution of the gap fractionR_ =N _ /N, vs Anfor MinBias (CLC *CLC , )
and MiniPlug jet events (MP *MP , )ofE . >2GeV andE >4 GeV.
The distributions are similar in shape within the uncertainties.
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SUMMARY
d Introduction

» Diffractive PDF looks like proton PDF

» Exclusive Dijet production
seePhys. Rev. D 77, 052004 (2008

 Diffractive W/Z with RPS data
» W diffractive fraction in agreement with Run |
» W and Z diffractive fractions are equal within error
» Tune in for news on the DSF in W production

O Central rapidity gaps
» Measured gap fraction dependence on width and
n-position of gap for hard / soft triggers at |n|>4.
=>» the distributions shapes are similar
=» the hard scale fractions are suppressed relative to
the soft scale fractions by a factor of order 10.
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The Roman-Pot Detectors at CDF

Concept of a Roman Pot

fiducial area

vacuum
of detector
= o L B
____ _recoil antiproton
B
“pot” bellows:
(not under expanded contracted
vacuum) —pot out —potin

beampipe
motor to drive
bellows bellows
. detector
inside of goes
pot inside pot

—

Roman-Pot Detector Design — bz The Rockefeller Universit¥ i

The three Roman pots each
contain detectors consisting of:

« Trigger scintillation counter

r Reconstructed mrack

A bunch of fibers

2.1x2.1x0.8 cm3

-1
in ;

« 40 X + 40 Y fiber readout

channels

- Each consists of 4
(— bigger signal)
clad scintillating fibers
0.8x0.8 mm?
(new technology at the time)

- X,Y each have 2 rows of 20
fibers spaced 1/3 fiber width
apart for improved position

OSmm

“Por 1

= measured hir position

— DL, = i)

: Scimillating fiber
(KURARAY SCSFEI1 single cladp

resolution (three times better
than with a single row)

Expected position

Expected angle resolution

resolution 80 um

60 prad

Phxsics Using the Roman-Pot Detectors i
. e Oman-pot In elastic scattering, both the In single diffraction, the (anti)proton In double pomeron

proton and antiproton escape in
the forward direction very close to

the beam direction
B P
P
P P

detectors are used to
study diffractive
interactions

« Elastic scattering was
measured by CDF in

escapes in the forward direction
where it can be detected in the forward antiproton, but not
Roman pots the proton

5 )
P
P 3

exchange, CDF detects the

1988-1989 using
Roman pots (not those
described here) in both

Elastic scattering:
nothing in the central
detector

QfTypical interactions
studied at CDF: particl
production fills the

L detector

0

Diffraction: gap betwee]
particle production and|
forward antiproton

L] OoPE:gap in botn
forward regions and
particle production in

n between

the

[l

proton and
yroton direction

m
tnn S mmmmnNoRsRifffactive s Elastic.ScatteringummmSingleRiffractive summ-Double.Remeronuummmmmmmmnyged-torreconstruct the kinematics

Exchange

CDF had three Roman pots (RP1, RP2, RP3)
located 57m downstream of the interaction point
along the antiproton beam direction.

They were used to detect antiprotons which
underwent a “diffractive” interaction and were
scattered in a direction very close to that of the
original beam.

—

Recoil b

X R ares 2 1x 1 m
Fipe center
T MAPMT

Path of the Antiﬁroton through the Tevatron Magnets i

« Dipole magnets bend recoil dciggzcs“;rn g gfi;‘gnbeeam
antiprotons which have lost skew quad ™t z (m)
momentum towards the inside of ol 9@ A0 w0 20 e, o
the Tevatron ring, into the Roman  _ o vs cOF
« Knowledge of the beam optics, the = Ay TTT i
collision vertex position, and the BP D D D O HS vs a a aq Bo
antiproton track position and angle divoles clectrostatic  low-beta
mn in the Roman-pot detectors are P
bend the beams around separators quadrupoles
antiprouons vl 'Separate the proton  focus the beams at the

and antiproton
beams

of the diffractive antiproton CDF interaction point

Roman pots
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Measurements "/the MiniPlugs
Dynamic Alignment of RPS Detectors

E'. Calibration
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in a pbar-p event at 1960 GeV.

« “Jet” indicates an energy cluster
and may be just a hadron.

» 1000 counts ~ 1 GeV
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Dynamic Alignment of RPS Detectors

Method: iteratively adjust the RPS X and Y offsets from the

nominal beam axis until a maximum in the b-slope is obtained @ t=0.
fixed &
| =05

i 0
L% |« 1=05
® pbar

2m

DIQUADSID:IDI DIPOLEs |D. . . )
] 0

-
57m to CDF
X

“lpcaL  [lvecaL [ Jcie [ |Bsc [MIrePs

DIPOLEs QUADs
— I ]l —TH__|

CDF Run Il Preliminary

1]

?104CDF Run Il Preliminary | _ 2“_ le”.mg fGCTOF‘S
= —e— X .t at NOMinal 2o .
g == X e *0.2 CM gﬂ,f \\ '{,-f/ 1-statistics
g -.-_._ —— xoffset+0'4 cm émz \\'\._ _‘.‘j, 2-b€0m SiZZ
£10 e T ] 3-bea jitter
g . ’ 06 05 04 03 02 01 v nfls;;-]:cm]
© i S i CDF Run Il Preliminary
=] N b 7 °C
T —e- tor
10° = 30 hi d CDF £ P @ CDF
— Zoaf
B2V D eEdsEe a = /1| W/lowlum data
m in the low luminosity run = P4
| I | | I | | I | | | I | | | | I I | L1 1 | I I | | g‘ -15 i 30 um
0 01 02 03 04 05 06 07 08 09 _1 i S I D D D
It [Gev T T amm

FP@LHC, 6-8 DEC 2008 DIFFRACTIVE W/ Z and GAPS at CDF I K. GOULIANOS 36



E-Jet Calibration

>use RPS information to check jet energy corrections €

AT | R —— T SOS— Raw Jets (dotted)
C [ CDFRunllData Entries 160
QO [~ 5 Mean 0.02438
o [ T P R RMS 0.01115
[ Ejr “>10 Ge: L5 Corrected Jets (dashed)
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Calibrate ExJ®T or £, as you wish!  AS = Cgps - §;
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