

Diffraction at CDF and cross sections at the LHC K. Goulianos

FP@LHC 2009

...some recent references

Presented @ CERN, 29th June - 3rd July 2009
Factorization Breaking in Diffraction http://physics.rockefeller.edu/dipo/myhtml/tolks/
goulianos_konstantin_eds09_factorization.pdf
The Forward Detectors of CDF and DO
goulianos_konstantin_eds09_detectors.pdf
Diffractive and Total pp Cross Sections at LHC
goulianos_konstantin_eds09_sigma.pdf
What can we Learn / Expect on Elastic and Diffractive Scattering
from the LHC Experiments? (discussion session - see K. Eggert's talk)
goulianos_konstantin_eds09_ discussion.pdf

Contents

- 1 Introduction
- 2 Diffraction at CDF: 17 PRLs / PRDs
 - http://physics.rockefeller.edu/publications.html
- 3 Current data analyses

Diffractive W/Z..... - under internal review Central gaps.....

- Diffractive dijet SF.. under internal review
- DSF in DPE..... final stage of analysis

 - towards internal review
- Cross sections at the LHC 4

1

1 Introduction

2 Diffraction at CDF: 17 PRLs / PRDs

see http://physics.rockefeller.edu/publications.html

3 Current data analyses

Diffractive dijet SF.. DSF in DPE..... Diffractive W/Z..... Central gaps.....

- under internal review
- final stage of analysis
- under internal review
- towards internal review

4 Cross sections at the LHC

p-p Interactions

<u>Goal</u>: understand the QCD nature of the diffractive exchange

FP@LHC 2009

Rapidity Gaps in Fireworks

FP@LHC 2009

Witten I'v

2

Introduction Diffraction at CDF: 17 PRLs / PRDs see http://physics.rockefeller.edu/publications.html Current data analyses Diffractive dijet SF.. DSF in DPE..... Diffractive W/Z..... Central gaps....

4 Cross sections at the LHC

Diffraction at CDF

σ^T_{SD} (pp & pp) → suppressed relative to Regge prediction

M² scaling

→ ds/dM2 independent of s over 6 orders of magnitude!

→ Independent of S over 6 orders of magnitude in M^2 !

\rightarrow factorization breaks down to ensure M² scaling!

FP@LHC 2009

Saturation / Single Diffraction

12

Diffractive Structure Function (DSF) Breakdown of QCD factorization

σ^{T}_{sD} and dijets

14

Hard diffractive fractions

Exclusive Dijet and Higgs Production

Phys. Rev. D 77, 052004

Exclusive Dijet x-section vs. M_{ii}

<u>line</u>: ExHuME hadron-level exclusive di-jet cross section vs. di-jet mass <u>points</u>: derived from CDF excl. di-jet x-sections using ExHuME

Stat. and syst. errors are propagated from measured cross section uncertainties using M_{jj} distribution shapes of ExHuME generated data.

3

4 Cross sections at the LHC

- The x_{Bj}-distribution of the SD/ND ratio has no strong Q² dependence
- the slope of the t-distribution is independent of Q²
- the t-distribution

Dijets - E_T distributions

→ similar for SD and ND over 4 orders of magnitude

Kinematics

FP@LHC 2009

DSF from Dijets in DPE

Does QCD factorization hold for the formation of the 2nd gap?

stay tuned...

22

Central gaps

Gap Fraction in events with a CCAL gap

The distribution of the gap fraction $R_{gap} = N_{gap}/N_{all}$ vs $\Delta \eta$ for MinBias $(CLC_p \circ CLC_{pbar})$ and MiniPlug jet events $(MP_p \circ MP_{pbar})$ of $E_{T(jet1,2)} > 2$ GeV and $E_{T(jet1,2)} > 4$ GeV. The distributions are similar in shape within the uncertainties.

4

4 Cross sections at the LHC

...some references

http://physics.rockefeller.edu/dino/my.html

- CDFPRD 50, 5518 (1994)σel @ 1800 & 546 GeVCDFPRD 50, 5535 (1994)σD @ 1800 & 546 GeV
- CDF PRD 50, 5550 (1994) σ^T @ 1800 & 546 GeV
- KG-PR Physics Reports 101, No.3 (1983) 169-219 Diffractive interactions of hadrons at high energies
- KG-95 PLB 358, 379 (1995); Erratum: PLB 363, 268 (1995) Renormalization of hadronic diffraction

CMG-96 PLB 389, 176 (1996)
 Global fit to p[±]p, π[±] and K[±]p cross sections
 KG-09 arXiv:0812.4464v2 [hep-ph] 26 March 2009
 Pomeron intercept and slope: the QCD connection

Standard Regge Theory

FP@LHC 2009

Global fit to $p^{\pm}p$, π^{\pm} , $K^{\pm}p$ x-sections

FP@LHC 2009

σ^{T} at LHC from global fit

FP@LHC 2009

Unitarity and Renormalization

Pomeron-proton x-section

The value of s_o -limited edition

The value of s_o - a bird's-eye view

$$\sigma_{SD}^{\mathsf{T}} \text{ and ratio of } \alpha'/\varepsilon$$

$$\frac{d^2 \sigma(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{\mathcal{P}p}\right] \frac{s^{2\epsilon}}{N(s)} \frac{1}{(M^2)^{1+\epsilon}} e^{bt}$$

$$s \Rightarrow \infty \left[2\alpha' e^{\frac{\epsilon b_0}{\alpha'}} \sigma_{\circ}^{\mathcal{P}p}\right] \frac{\ln s^{2\epsilon}}{(M^2)^{1+\epsilon}} e^{bt}, (13)$$

$$\sigma_{sd} \xrightarrow{s \to \infty} 2 \sigma_{\circ}^{\mathcal{P}p} \exp\left[\frac{\epsilon b_0}{2\alpha'}\right] = \sigma_{sd}^{\infty} = \text{constant.} (14)$$

$$2\sigma_{\circ}^{\mathcal{P}p} \exp\left[\frac{\epsilon b_0}{2\alpha'}\right] = \sigma_{0}^{pp}, \qquad \sigma_{\circ}^{\mathcal{P}p} = \beta_{\mathcal{P}pp}(0) \cdot g(t) = \kappa \sigma_{sd}^{pp} \\ \kappa = \frac{f_{\circ}^{\infty}}{N_{\circ}^{\varepsilon-1}} + \frac{f_{\circ}^{\infty}}{N_{\circ}} \\ b_0 = R_p^2/2 = 1/(2m_{\pi}^2). \qquad CTEQ5L \rightarrow \frac{f_g^{\infty} = 0.75}{f_g^{\infty} = 0.25}$$

$$r = \frac{\alpha'}{\epsilon} = -[16 m_{\pi}^2 \ln(2\kappa)]^{-1} \qquad r_{pheno} = 3.2 \pm 0.4 \text{ (GeV/c)}^{-2} \\ r_{exp} = 0.25 \text{ (GeV/c)}^{-2}/0.08 = 3.13 \text{ (GeV/c)}^{-2}$$

FP@LHC 2009

Total Cross Section at LHC

□ Froissart bound $\sigma \le \frac{\pi}{m^2} \cdot \ln^2 s$ (s in GeV²) \Box For m² = m_{π}² \rightarrow π / m² ~ 10⁴ mb – large! \Box If m² = s₀ = (mass)² of a large SUPERglueBALL, the bound can be reached at a much lower s-value, s_F, $\Rightarrow \sigma(s > s_F) = \sigma(s_F) + \frac{\pi}{s_o} \cdot \ln^2 \frac{s}{s_F}$

 \Box Determine s_F and s₀ from σ_T^{SD}

- □ Show that $\sqrt{s_F} < 1.8$ TeV
- **Given Show that at** \sqrt{s} = 1.8 TeV Reggeon contributions are negligible

Get cross section at the LHC as

$$\sigma^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{s_0} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right)$$

The SUPERBALL cross-section

Froissart bound

$$\sigma \leq \frac{\pi}{m^2} \cdot \ln^2 s$$

□ Valid above "knee" at \sqrt{s} = 22 GeV and therefore at \sqrt{s} = 1.8 TeV

Use superball mass:

→ $m^2 = s_0 = (1\pm 0.2) \text{ GeV}^2$

 \Box At \sqrt{s} 1.8 TeV Reggeon contributions are negligible (see global fit)

$$\sigma_{14000}^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{s_0} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) = (80.03 \pm 2.24) + (39 \pm 6) = 119 \pm 6 \text{ mb}$$

compatible with CGM-96 global fit result of 114 ± 5 mb (see next slides)

FP@LHC 2009

34

The Roman-Pot Detectors at CDF

- escapes in the forward direction xchange, CDF detects the detectors are used to the forward direction very close to where it can be detected in the forward antiproton, but study diffractive the beam direction Roman pots interactions Elastic scattering was measured by CDF in 1988-1989 using stic scattering action: gap bety PE: gap in bol Roman pots (not those died at CDE: par othing in the cent ard regions and le production a duction fills the antiprotor le production i described here) in both the proton and Non-Diffractive Elastic Scattering Single Diffractive Double Pomeron proton direction Exchange
- Dipole magnets bend recoil antiprotons which have lost momentum towards the inside of the Tevatron ring, into the Roman pots
- Knowledge of the beam optics, the collision vertex position, and the antiproton track position and angle in the Roman-pot detectors are used to reconstruct the kinematics of the diffractive antiproton

Gap survival probability

FP@LHC 2009

CDF and D0 Detectors

37