

Diffraction at CDF and cross sections at the LHC K. Goulianos

…some recent references

Contents

- 1 Introduction
- 2 Diffraction at CDF: 17 PRLs / PRDs
	- http://physics.rockefeller.edu/publications.html
- 3 Current data analyses

Diffractive W/Z - under internal review

- Diffractive dijet SF.. under internal review
- DSF in DPE……………….. final stage of analysis
	-
- Central gaps………………. towards internal review
- 4 Cross sections at the LHC

1

1 Introduction

2 Diffraction at CDF: 17 PRLs / PRDs

see http://physics.rockefeller.edu/publications.html

3 Current data analyses

Diffractive W/Z.......... - under internal review

- Diffractive dijet SF.. under internal review
- DSF in DPE……………….. final stage of analysis
	-
- Central gaps………………. towards internal review

4 Cross sections at the LHC

p-p Interactions

Goal: understand the QCD nature of the diffractive exchange

Rapidity Gaps in Fireworks

<u>ANDREWSER</u>

FP@LHC 2009 Diffraction at CDF and cross sections at the LHC K. Goulianos 7

Rapidity

 ϵ

Firework of the United States of the United States and

2

4 Cross sections at the LHC

Diffraction at CDF

σ_{S_D} (pp & pp) → suppressed relative to Regge prediction

M² scaling

ds/dM2 independent of s over 6 orders of magnitude!

 \rightarrow Independent of S over 6 orders of magnitude in M²!

\rightarrow factorization breaks down to ensure M² scaling!

Saturation / Single Diffraction

Diffractive Structure Function (DSF) Breakdown of QCD factorization

s**T SD** and dijets

Hard diffractive fractions

Exclusive Dijet and Higgs Production

Phys. Rev. D 77, 052004

Exclusive Dijet x-section vs. M_{ii}

line: ExHuME hadron-level exclusive di-jet cross section vs. di-jet mass points: derived from CDF excl. di-jet x-sections using ExHuME

Stat. and syst. errors are propagated from measured cross section uncertainties using M_{ii} distribution shapes of ExHuME generated data.

3

4 Cross sections at the LHC

- The x_{Bi}-distribution of the SD/ND ratio has no strong Q² dependence
- \cdot the slope of the t-distribution is independent of Q^2
- اللَّهُ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَال
(اللَّهُ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَالِيَّةُ مِنْ الْمَا
- \triangleright all three results \rightarrow "first observation"

Dijets - E_T distributions

 \rightarrow similar for SD and ND over 4 orders of magnitude Kinematics

DSF from Dijets in DPE

Does QCD factorization hold for the formation of the 2nd gap?

stay tuned…

Central gaps

Gap Fraction in events with a CCAL gap

The distribution of the gap fraction R_{gap}=N_{gap}/N_{all} vs $\Delta \eta$ for MinBias (CLC_p•CLC_{pbar}) and MiniPlug jet events $(MP_p^*MP_{pbar})$ of $E_{T(jet1,2)} > 2$ GeV and $E_{T(jet1,2)} > 4$ GeV. The distributions are similar in shape within the uncertainties.

4

4 Cross sections at the LHC

…some references

http://physics.rockefeller.edu/dino/my.html

- CDF PRD 50, 5518 (1994) σ^{el} @ 1800 & 546 GeV
- CDF PRD 50, 5535 (1994) σ^{D} @ 1800 & 546 GeV
- CDF PRD 50, 5550 (1994) σ^T @ 1800 & 546 GeV
- KG-PR Physics Reports 101, No.3 (1983) 169-219 Diffractive interactions of hadrons at high energies
- KG-95 PLB 358, 379 (1995); Erratum: PLB 363, 268 (1995) Renormalization of hadronic diffraction

CMG-96 PLB 389, 176 (1996) Global fit to $p^{\pm}p$, π^{\pm} and K^{\pm}p cross sections KG-09 arXiv:0812.4464v2 [hep-ph] 26 March 2009 Pomeron intercept and slope: the QCD connection

Standard Regge Theory

Global fit to $p^{\pm}p$, π^{\pm} , K $^{\pm}p$ x-sections

σ^T at LHC from global fit

Unitarity and Renormalization

Pomeron-proton x-section

The value of s_{o} - limited edition

The value of s_{0} - a bird's-eye view

$$
\frac{\sigma^T_{SD} \text{ and ratio of } \alpha' / \varepsilon}{\frac{d^2 \sigma(s, M^2, t)}{dM^2 dt}} = \left[\frac{\sigma_o}{16\pi} \sigma_o^{Fp}\right] \frac{s^{2\epsilon}}{N(s)} \frac{1}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
s \Rightarrow \infty \left[2\alpha' e^{\frac{\epsilon b_0}{\alpha'} \sigma_o^{Fp}}\right] \frac{\ln s^{2\epsilon}}{(M^2)^{1+\epsilon}} e^{bt}, (13)
$$
\n
$$
\sigma_{sd} \xrightarrow{s \to \infty} 2 \sigma_o^{Fp} \exp\left[\frac{\epsilon b_0}{2\alpha'}\right] = \sigma_{sd}^{\infty} = \text{constant.}
$$
\n
$$
\left[2\alpha' e^{\frac{\epsilon b_0}{\alpha'} \sigma_o^{Fp}}\right] = \frac{\sigma_{sd}^{\infty}}{N_s^2 - 1} + \frac{\sigma_o^{\infty}}{N_s^2} e^{C \text{TEQSL} \rightarrow \frac{f_o^{\infty}}{f_g^{\infty}} = 0.75
$$
\n
$$
\frac{2\sigma_o^{Fp} \exp\left[\frac{\epsilon b_0}{2\alpha'}\right] = \sigma_0^{p} e^{\frac{\epsilon b}{N_s^2 - 1} + \frac{f_o^{\infty}}{N_s^2}}}{\frac{b_0}{N_s^2 - 1/(2m_\pi^2)}} e^{\frac{\epsilon b}{N_s^2 - 1/(2m_\pi^2)}} e^{C \text{TEQSL} \rightarrow \frac{f_o^{\infty}}{f_g^{\infty}} = 0.25}
$$
\n
$$
r = \frac{\alpha'}{\epsilon} = -[16 m_\pi^2 \ln(2\kappa)]^{-1} \frac{r_{pheno} = 3.2 \pm 0.4 \text{ (GeV/c)}^{-2}}{r_{exp} = 0.25 \text{ (GeV/c)}^{-2}/0.08 = 3.13 \text{ (GeV/c)}^{-2}}
$$

Total Cross Section at LHC

\n- □ Froissart bound
$$
\sigma \leq \frac{\pi}{m^2} \cdot \ln^2 s
$$
 (s in GeV²)
\n- □ For $m^2 = m_\pi^2 \rightarrow \pi / m^2 \sim 10^4$ mb – large!
\n- □ If $m^2 = s_o = (mass)^2$ of a large **SUPERglueBALL**, the bound can be reached at a much lower s-value, s_F , π and π is a constant. π and π are the same as $$

Q Determine s_F and s₀ from σ_T ^{SD}

- □ Show that $\sqrt{s_F}$ < 1.8 TeV
- \Box Show that at \sqrt{s} = 1.8 TeV Reggeon contributions are negligible

 \Box Get cross section at the LHC as

$$
\boxed{\sigma^{LHC}=\sigma_{1800}^{CDF}+\frac{\pi}{s_{\text{0}}}\cdot\left(\ln^2\frac{s^{LHC}}{s_{\text{F}}}-\ln^2\frac{s^{CDF}}{s_{\text{F}}}\right)}
$$

 $(s > s_F)$

 $\sigma(s > s_F) = \sigma(s_F) + \frac{\pi}{\sigma}.$

F

2

ln

o

s

 $F = \frac{S_0}{S_0}$ $F = \frac{S_0}{S_0}$

The **SUPERBALL** cross-section

Froissart bound

$$
\sigma \leq \frac{\pi}{m^2} \cdot \ln^2 s
$$

Valid above "knee" at \sqrt{s} = 22 GeV and therefore at \sqrt{s} = 1.8 TeV

Use superball mass:

 \rightarrow m² = s₀ = (1±0.2) GeV²

At √s 1.8 TeV Reggeon contributions are negligible (see global fit)

$$
\sigma_{14000}^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{s_0} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) = (80.03 \pm 2.24) + (39 \pm 6) = 119 \pm 6 \text{ mb}
$$

 \rightarrow compatible with CGM-96 global fit result of 114 \pm 5 mb (see next slides)

● The Roman-pot detectors are used to study diffractive interactions • Elastic scattering was measured by CDF in 1988-1989 using Roman pots (not those described here) in both the proton and **aroton** direction

Rockefeller^e

In elastic scattering, both the proton and antiproton escape in the forward direction very close to the beam direction

> Elastic scattering: nothing in the central detector

Typical interactions studied at CDF: particle ion fills the detector

Non-Diffractive Elastic Scattering Single Diffractive Double Pomeron

In single diffraction, the (anti)proton es in the forward where it can be detected in the Roman pots

> ction: gap be particle production and forward antiproton

In double pomeron exchange, CDF detects the forward antiproton, but not the proton

> PE: gap in bo forward regions and particular in between

Exchange

The Roman-Pot Detectors at CDF

Path of the Antiproton through the Tevatron Magnets

- Dipole magnets bend recoil antiprotons which have lost momentum towards the inside of the Tevatron ring, into the Roman pots
- Knowledge of the beam optics, the collision vertex position, and the antiproton track position and angle in the Roman-pot detectors are used to reconstruct the kinematics of the diffractive antiproton

Gap survival probability

CDF and D0 Detectors

