Diffraction, saturation and Diffraction, saturation and *pp* cross sections at the LHC

Moriond QCD and High Energy Interactions La Thuile, March 20-27, 2011

BONO · HI

Rockefeller

niversit

RAC

CONTENTS

Q Introduction

- **□** Diffractive cross sections
- \Box The total, elastic, and inelastic cross sections
- Monte Carlo strategy for the LHC
- **□ Conclusions**

Why study diffraction?

Two reasons: one fundamental / one practical.

fundamental

<u>measure σ_T & ρ-value at LHC</u>:

check for violation of dispersion relations

\rightarrow sign for new physics

Bourrely, C., Khuri, N.N., Martin, A.,Soffer, J., Wu, T.T http://en.scientificcommons.org/16731756

Diffraction

practical: underlying event (UE), triggers, calibrations

 \rightarrow the UE affects all physics studies at the LHC

NEED ROBUST MC SIMULATION OF SOFT PHYSICS

MC simulations: Pandora's box was unlocked at the LHC!

 Presently available MCs based on pre-LHC data were found to be inadequate for LHC **MC tunes:** the "evils of the world" were released from Pandora's box at the LHC

… but fortunately, hope remained in the box \rightarrow a good starting point for this talk

Pandora's box is an artifact in Greek mythology, taken from the myth of Pandora's creation around line 60 of Hesiod's *Works And Days*. The "box" was actually a large jar (πιθος *pithos*) given to Pandora (Πανδώρα) ("all-gifted"), which contained all the evils of the world. When Pandora opened the jar, the entire contents of the jar were released, but for one – hope. *Nikipedia*

Diffractive gaps **definition:** gaps not exponentially suppressed

Diffractive pbar-p studies @ CDF

Basic and combineddiffractive processes

Regge theory – values of s_0 & g?

A complication ... > Unitarity!

$$
\left(\frac{d\sigma_{el}}{dt}\right)_{t=0} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}, \quad \sigma_t \sim \left(\frac{s}{s_o}\right)^{\epsilon}, \quad \sigma_{sd} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}
$$

 \Box dσ/dt $\sigma_{\rm sd}$ grows faster than $\sigma_{\rm t}$ as *s* increases **→** unitarity violation at high *s*

(similarly for partial x-sections in impact parameter space)

the unitarity limit is already reached at √*s* ~ 2 TeV

Single diffraction renormalized – (1)

KG Î CORFU-2001: hep-ph/0203141

KG → EDS 2009: http://arxiv.org/PS_cache/arxiv/pdf/1002/1002.3527v1.pdf

Single diffraction renormalized – (2)

$$
\text{color}\n\begin{pmatrix}\n\text{color} \\
\text{factor} \\
\text{factor}\n\end{pmatrix}\n\begin{pmatrix}\n\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}} \approx 0.17\n\end{pmatrix}
$$

Experimentally: **KG&JM, PRD 59 (114017) 1999**

$$
\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104
$$

QCD:
$$
\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18
$$

Single diffraction renormalized - (3)

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_o}{16\pi} \sigma_o^{I\!\!P}p\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\n
$$
b = b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_o^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2
$$
\n
$$
N(s, s_o) \equiv \int_{\xi_{\text{min}}}^{\xi_{\text{max}}} d\xi \int_{t=0}^{-\infty} dt f_{I\!\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_o^{\epsilon} \frac{s^{2\epsilon}}{\ln s}
$$
\n
$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\nset to unity\n
$$
\sigma_{sd} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const
$$

Single diffraction renormalized – (4)

$$
\frac{d^2\sigma}{dt d\Delta y} = N_{gap} \cdot C \cdot F_p^2(t) \cdot \left\{ e^{(\varepsilon + \alpha' t) \Delta y} \right\}^2 \cdot \kappa \cdot \left\{ \sigma_o e^{\varepsilon \Delta y'} \right\}
$$
\n
$$
P_{gap}(\Delta y, t)
$$
\n
$$
N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) d\Delta y dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}
$$
\n
$$
\frac{d^2\sigma}{dt d\Delta y} = C'' \left[e^{\varepsilon (\Delta y - \ln s)} \cdot \ln s \right] e^{(b_0 + 2\alpha' \Delta y)t}
$$
\ngrows slower than s^ε\n
$$
\Rightarrow \text{Pumplin bound obeyed at all impact parameters}
$$

M² distribution: data \rightarrow do/dM²|_{t=-0.05} ~ independent of s over 6 orders of magnitude!

\rightarrow factorization breaks down to ensure M² scaling

Scale s_0 and triple-pom coupling

Saturation "glueball" at ISR?

Exclusive $\pi^*\pi^-$

Figure 8: $M_{\pi^+\pi^-}$ spectrum in DIPE at the ISR (Axial Field Spectrometer, R807 [97, 98]). Figure from Ref. $[98]$. **See M.G.Albrow, T.D. Goughlin, J.R. Forshaw, hep-ph>arXiv:1006.1289**

Multigap cross sections, e.g. SDD

SDD in CDF: data vs NBR MC

http://physics.rockefeller.edu/publications.html

Multigaps: a 4-gap x-section

Presented at DIS-2005, XIIIth International Workshop on Deep Inelastic Scallering, April 27 - May 1 2005, Madison, WI, U.S.A.

Multigap Diffraction at LHC

- This formula should be valid above the knee in σ_{sd} vs. \sqrt{s} at $\sqrt{s}_F = 22$ GeV (Fig. 1) and therefore valid at $\sqrt{s} = 1800 \text{ GeV}.$
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at $\sqrt{s} = 1800$ GeV are negligible, as can be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$$
\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right)
$$

SUPERBALL MODEL

$$
\frac{98 \pm 8 \text{ mb at 7 TeV}}{109 \pm 12 \text{ mb at 14 TeV}}
$$

Total inelastic cross section

^σSD and ratio of α'/ε

PHYSICAL REVIEW D 80, 111901(R) (2009)

Pomeron intercept and slope: A QCD connection

Konstantin Goulianos

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{p_p} \right] \frac{s^{2\epsilon}}{N(s)} \frac{1}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
\frac{s \to \infty}{\Rightarrow} \left[2\alpha' e^{(\epsilon b_0)/\alpha'} \sigma_{\circ}^{p_p} \right] \frac{\ln s^{2\epsilon}}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
\sigma_{pp/\bar{p}p}^{\text{tot}} = \sigma_{\circ} \cdot e^{\epsilon \Delta \eta}.
$$
\n
$$
\sigma_{sd}^{\text{tot}} = 2\sigma_{\circ}^{p_p} \exp\left[\frac{\epsilon b_{\circ}}{2\alpha'} \right] = \sigma_{\circ}^{p_p}
$$
\n
$$
\sigma_{sd}^{\text{tot}} = \frac{\epsilon b_{\circ}}{2\alpha'} \left[16\pi \int_{0}^{\pi} e^{(\epsilon b_0)/\alpha'} \frac{1}{\alpha_{\circ}^{p_p}} e^{(\epsilon b_0)/\alpha'} \frac{1}{\alpha_{\circ}^{p_p}} e^{(\epsilon b_0)/\alpha'} e^{(\epsilon b_0)/\alpha
$$

f.

Diffraction in PYTHIA -1

$$
\sigma_{\text{tot}}^{AB}(s) = X^{AB} s^{\epsilon} + Y^{AB} s^{-\eta} \quad \epsilon = 0.0808
$$

 $\sigma_{\rm tot}^{AB}(s) = \sigma_{\rm el}^{AB}(s) + \sigma_{\rm sd(XB)}^{AB}(s) + \sigma_{\rm sd(AX)}^{AB}(s) + \sigma_{\rm dd}^{AB}(s) + \sigma_{\rm nd}^{AB}(s)$

$$
\begin{array}{rcl}\n\frac{\mathrm{d}\sigma_{\rm sd(XB)}(s)}{\mathrm{d}t\,\mathrm{d}M^2} & = & \frac{g_{3\rm I\!P}}{16\pi} \,\beta_{\rm A\rm I\!P} \,\beta_{\rm B\rm I\!P}^2 \,\frac{1}{M^2} \, \exp(B_{\rm sd(XB)}t) \, F_{\rm sd} \\
\frac{\mathrm{d}\sigma_{\rm sd(AX)}(s)}{\mathrm{d}t\,\mathrm{d}M^2} & = & \frac{g_{3\rm I\!P}}{16\pi} \,\beta_{\rm A\rm I\!P}^2 \,\beta_{\rm B\rm I\!P} \,\frac{1}{M^2} \, \exp(B_{\rm sd(AX)}t) \, F_{\rm sd} \\
\frac{\mathrm{d}\sigma_{\rm dd}(s)}{\mathrm{d}t\,\mathrm{d}M_1^2\,\mathrm{d}M_2^2} & = & \frac{g_{3\rm I\!P}}{16\pi} \,\beta_{\rm A\rm I\!P} \,\beta_{\rm B\rm I\!P} \,\frac{1}{M_1^2} \,\frac{1}{M_2^2} \, \exp(B_{\rm dd}t) \, F_{\rm dd}\n\end{array}
$$

some comments:

- **1/M² dependence instead of** $(1/M^2)^{1+\epsilon}$
- F-factors put "by hand" next slide
- \blacksquare B_{dd} contains a term added by hand next slide

Diffraction in PYTHIA -2

$$
B_{sd(XB)}(s) = 2b_B + 2\alpha' \ln\left(\frac{s}{M^2}\right),
$$

\n
$$
B_{sd(AX)}(s) = 2b_A + 2\alpha' \ln\left(\frac{s}{M^2}\right),
$$

\n
$$
B_{dd}(s) = 2\alpha' \ln\left(\frac{s}{M^2}\right)
$$

\n
$$
B_{dd}(s) = 2\alpha' \ln\left(\frac{s}{M^2}\right) + \frac{sg_0}{M_1^2 M_2^2}
$$

\n
$$
B_{dd}(s) = 2\alpha' \ln\left(\frac{s}{M_1^2 M_2^2}\right)
$$

Fudge factors:

- **Suppression at kinematic** limit
- **Example 1 Second Example 1** kill overlapping diffractive systems in dd
- **Example 10 Fernal Property** enhance low mass region

$$
F_{\rm sd} = \left(1 - \frac{M^2}{s}\right) \left(1 + \frac{c_{\rm res} M_{\rm res}^2}{M_{\rm res}^2 + M^2}\right),
$$

\n
$$
F_{\rm dd} = \left(1 - \frac{(M_1 + M_2)^2}{s}\right) \left(\frac{s m_{\rm p}^2}{s m_{\rm p}^2 + M_1^2 M_2^2}\right)
$$

\n
$$
\times \left(1 + \frac{c_{\rm res} M_{\rm res}^2}{M_{\rm res}^2 + M_1^2}\right) \left(1 + \frac{c_{\rm res} M_{\rm res}^2}{M_{\rm res}^2 + M_2^2}\right)
$$

CMS: observation of Diffraction at 7 TeV

An example of a beautiful data analysis and of MC inadequacies **CMS Preliminary 2010** 1000 p+p (7 TeV) BSC OR and Vertex Energy scale $\pm 10\%$ PYTHIA-8 PYTHIA-6 D6T 800 **PYTHIA-6 CW** PYTHIA-6 DW **PYTHIA-8 Non-diffractive** 600 **PYTHIA-6 D6T Non-diffractive PYTHIA-6 CW Non-diffractive PYTHIA-6 DW Non-diffractive** 400 200 0 $10²$ 10 \sum (E-pz) (GeV)

13: CMS inclusive single diffraction observation: data vs. MC.

• No single MC describes the data in their entirety

Monte Carlo Strategy for the LHC

^σ**T**

 $Im f_{el}$ ($t=0$)

 $Re f_{el}$ $(t=0)$

optical theorem

dispersion relations

MONTE CARLO STRATEGY

- \Box σ ^T \rightarrow from SUPERBALL model
- **Q** optical theorem \rightarrow Im f_{el}(t=0)
- **Q** dispersion relations \rightarrow Re f_{el}(t=0)
- \Box σ ^{el}
- \Box σ inel
- **Δ** differential σ^{sp} → from RENORM
- **□ use nesting of final states (FSs) for** *pp* collisions at the *IP-p* sub-energy √s'

Strategy similar to that employed in the MBR (Minimum Bias Rockefeller) MC used in CDF based on multiplicities from: K. Goulianos, Phys. Lett. B 193 (1987) 151 pp "A new statistical description of hardonic and e⁺e⁻ multiplicity distributions "

Monte Carlo algorithm - nesting

SUMMARY

Q Introduction **Q** Diffractive cross sections \triangleright basic: SD_{p} , $\text{SD}_{\text{\bar{p}}}$, DD, DPE ¾ combined: multigap x-sections \triangleright ND \rightarrow no-gaps: final state from MC with no gaps ❖ this is the only final state to be tuned \Box The total, elastic, and inelastic cross sections □ Monte Carlo strategy for the LHC – use "nesting" **derived from ND and QCD color factors**

RISING X-SECTIONS IN PARTON MODEL

$$
\overbrace{\sigma_T(s) = \sigma_o \ e^{\varepsilon \Delta y'} = \sigma_o \ s^{\varepsilon}}^{\Delta y' = \ln s}
$$

Emission spacing controlled by α -strong

 \blacktriangleright $\sigma_{\textrm{T}}$: power law rise with energy

(see E. Levin, An Introduction to Pomerons,Preprint DESY 98-120)

 $\boldsymbol{\alpha}$ ' reflects the size of the emitted cluster,

which is controlled by 1 / $\alpha_{\mathtt{s}}^{}$ and thereby is related to ε

$$
\phi \longrightarrow \Delta y = \ln s
$$
\n
$$
\boxed{\ln f_{el}(s,t) \propto e^{(s+a't)\Delta y}}
$$

Forward elastic scattering amplitude

Gap survival probability

Diffraction in MBR: dd in CDF

http://physics.rockefeller.edu/publications.html

Diffraction in MBR: DPE in CDF

http://physics.rockefeller.edu/publications.html

Dijets in γp at HERA from RENORM

K. Goulianos, POS (DIFF2006) 055 (p. 8)

Saturation at low Q² and small-x

