Soft and Hard Diffraction Konstantin Goulianos The Rockefeller University

Small *x* and Diffraction 2003 17-20 September 2003, FERMILAB

17-20 September 2003

Contents

SOFT DIFFRACTION

 \checkmark M²-scaling

- \checkmark Triple-pomeron coupling \rightarrow relate to color factors
- ✓ Derive full differential cross section from parton model
- ✓ Multi-gap diffraction

HARD DIFFRACTION

 \bullet Diffractive structure function \rightarrow derive from proton PDFs

- $> \beta$ and ξ dependence
- Regge and QCD factorization

HERA versus TEVATRON

- Normalization
- $> \beta$ dependence

Classical Picture of Diffraction

Elastic Scattering and Diffraction Dissociation

17-20 September 2003

Diffraction and Rapidity Gaps

✓ rapidity gaps are regions of pseudorapidity devoid of particles

Non-diffractive interactions:

Diffractive interactions:

Rapidity gaps are formed by multiplicity fluctuations.

From Poisson statistics:

$$P(\Delta \eta) = e^{-\rho \Delta \eta} \left(\rho = \frac{dN}{d\eta} \right)$$

(r=particle density in rapidity space)
Gaps are exponentially suppressed

Rapidity gaps are due to absence of radiation in "vacuum exchange"

$$\Delta \eta \approx -\ln \xi = \ln s - \ln M^2$$

$$\frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \quad \rightarrow \quad \frac{d\sigma}{d\Delta y} \sim \text{constant}$$

\checkmark large rapidity gaps are signatures for diffraction

17-20 September 2003

The Pomeron in QCD

> Quark/gluon exchange across a rapidity gap:

POMERON

> No particles radiated in the gap:

the exchange is COLOR-SINGLET with quantum numbers of vacuum

> Rapidity gap formation:

NON-PERTURBATIVE

Diffraction probes the large distance aspects of QCD:
 POMERON CONFINEMENT
 PARTONIC STRUCTURE
 FACTORIZATION

Diffraction at CDF in Run I

- **Elastic scattering** PRD 50 (1994) 5518
- **Total cross section** PRD 50 (1994) 5550

17-20 September 2003

Single Diffraction

Questions: universality of gap formation and of diffractive PDF's

17-20 September 2003 K. Goulianos, Small x and Diffraction, Fermilab

Soft Single Diffraction Data

 $p(\overline{p}) + p \rightarrow p(\overline{p}) + X$

The color factor K

Experimentally:

$$\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02 \quad \leftarrow \text{KG&JM, PRD 59 (114017) 1999}$$

Theoretically:
$$\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 \to 0} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18$$

 $x \cdot f(x) = \frac{1}{x^{\lambda}}$
 $\lambda_g = 0.20$
 $\lambda_g = 0.20$
 $\lambda_g = 0.04$
 $\lambda_g = 0.12$

Central and Double Gaps

Two-Gap Diffraction (hep-ph/0205141)

Renormalization removes the s-dependence -> SCALING

17-20 September 2003

Central and Double-Gap CDF Results

17-20 September 2003

Soft Double Pomeron Exchange

- Roman Pot triggered events
- 0.035 < ξ-pbar < 0.095
 |t-pbar| < 1 GeV ²
- \succ ξ -proton measured using

$$\xi_p = \frac{1}{\sqrt{s}} \sum_{\text{all particles}} E_T^i \cdot e^{\eta_i}$$

- Data compared to MC based on Pomeron exchange with
- → Pomeron intercept E=0.1

Good agreement over 4 orders of magnitude!

17-20 September 2003

Soft Diffraction Summary

Multigap variables

- Δy_i rapidity gap regions K color factor = 0.17
- $\Delta y'_i$ particle cluster regions also:

$$t_i - t$$
-across gap

 $\eta^o_{i,i}$ – centers of floating gap/clusters

Parton model amplitude

$$f_{(\Delta y,t)} \sim e^{(\varepsilon + \alpha' t) \Delta y}$$

Hard diffraction at CDF in Run I

CDF Forward Detectors

17-20 September 2003 K. Goulianos, Small x and Diffraction, Fermilab

17-20 September 2003

Diffractive Dijets with Leading Antiproton

17-20 September 2003

DDIS vs DIS at HERA

17-20 September 2003

<u>Dijets in Single Diffraction – R(x)</u>

17-20 September 2003

R(x) predicted from pronton PDFs

RENORM prediction of R(x) vs data

■ Ratio of diffractive to non-diffractive structure functions is predicted from PDF's and color factors with no free parameters.

 $\rightarrow F_{ii}(\beta,\xi)$ correctly predicted

→Test: processes sensitive to quarks will have more flat R(x) – diff W?

$$R(x)\Big|_{0.035<\xi<0.095}^{\text{DATA}} = \frac{(6.1\times10^{-4})}{x^{0.45}}$$

$$R(x)\Big|_{0.035<\xi<0.095}^{\text{RENORM}} \approx \frac{(4.0\times10^{-4})}{x^{0.55}}$$

 $F_2^{D}(x,Q^2)$ vs $F_2(x,Q^2)$ at HERA

Pomeron Intercept in DDIS

H1 Diffractive Effective $\alpha_{IP}(0)$

Dijets in Double Pomeron Exchange

17-20 September 2003

DSF: Tevatron double-gaps vs HERA

The diffractive structure function derived from double-gap events approximately agrees with expectations from HERA

17-20 September 2003

SUMMARY

Soft and hard conclusions

Use reduced energy cross section Pay a color factor K for each gap Get gap size from renormalized P_{gap}

Diffraction is an interaction between low-x partons subject to color constraints

17-20 September 2003 K. Goulianos, Small x and Diffraction, Fermilab