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Abstract

This note explains various ways to define a “pull” or “stretch”. It
discusses applications of this concept in problems of parameter esti-
mation (constrained and unconstrained fits) and hypothesis testing.
Monte Carlo methods are described to characterize pull distributions
in situations involving small samples.

1 Introduction

If a random variable x is generated repeatedly with a Gaussian distribution
of mean µ and width σ, then it is almost a tautology that the pull

g =
x− µ

σ
(1)

will be distributed as a standard Gaussian with mean zero and unit width.
Thanks to the central limit theorem, this simple property can be applied
in a wide range of situations from hypothesis testing to parameter estima-
tion, where pulls provide evidence for various forms of bias and allow the
verification of error coverage.

Section 2 introduces three definitions of pull in the context of parameter
estimation and describes a couple of simple applications. These applications
boil down to the comparison of a pull distribution with the expectation of
a standard Gaussian. In contrast, in hypothesis testing a single pull is used
as a test statistic to decide on the consistency of two measurements. This
is described in section 3. Section 4 considers non-asymptotic situations and
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how to define pulls in the presence of asymmetric errors. The statement that
pull distributions are expected to be standard Gaussian implies a properly
constructed ensemble of real or simulated measurements on which pulls are
defined. The question of how to construct simulated ensembles is studied in
section 5, where we also examine the effect of sample size on pull distribu-
tions. Finally, we give some general recommendations on the use of pulls in
section 6.

2 Pulls in parameter estimation

Two of the most popular methods of parameter estimation are least-squares
and maximum-likelihood. In the former, one minimises a weighted sum of
squares

S =
∑

i

(

yexp
i − ypred

i (τ)

σi

)2

(2)

where yexp
i ± σi are experimental measurements, and ypred

i are the predicted
values, which depend on one or more parameters τ . Then τm, the best value
of the parameter1, is determined by minimising S with respect to τ , and its

error σm is given for example by 1/
√

1
2

d2S
dτ2 .

Alternatively τ could be determined by maximising the likelihood

L =
∏

i

f
(

yexp
i , ypred

i (τ), σi

)

(3)

where f is the probability density for observing yexp
i when the predicted value

is ypred
i (τ).
It is also possible to perform a constrained fit, when other information

on the parameter(s) is available. Thus if τ has previously been measured as
τc ± σc, equations (2) and (3) would be modified to

S =
(

τ − τc
σc

)2

+
∑

i

(

yexp
i − ypred

i (τ)

σi

)2

(4)

and

L =
e−

1

2
( τ−τc

σc
)
2

√
2π σc

∏

i

f
(

yexp
i , ypred

i (τ), σi

)

(5)

1Although τ is determined by a fit to the data, we denote its fitted value by τm (m for
‘measured’), to distinguish it from τf (f for ‘fitted’) when we include some constraint in the
fit (see for example equation 4). This is consistent with the way we refer to the measured

momentum of a track as derived from a fit to the hits along its path, as opposed to the
fitted momentum, from a kinematic fit incorporating energy and momentum conservation.
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where the Gaussian factor gives the probability density for observing τc if the
true value is τ . It is assumed that the previous and the current measurements
are uncorrelated. For large samples (or for a linear model with Gaussian
uncertainties), the second factor in equation (5) is Gaussian in τ , and τf ±σf ,
the fit result that incorporates the constraint τc ± σc, is given by:

τf =
τm/σ

2
m + τc/σ

2
c

1/σ2
m + 1/σ2

c

(6)

σf =
1

√

1/σ2
m + 1/σ2

c

(7)

2.1 Unconstrained fits

Suppose we obtain a set of measurements of a parameter τ , whose “true”
or “generated” value is τg. The measurements are statistical fluctuations
around τg and could, for example, follow an exponential time distribution

1

τg
e−t/τg . (8)

If a histogram is produced, there would be Poisson fluctuations on the num-
bers in each bin. A fit to the data would give a value τm ± σm. Then, for
a large number of events in the distribution, we would expect τm to be ap-
proximately Gaussian distributed about τg, even though the distribution (8)
is non-Gaussian. For many repetitions of this procedure, the pull

g =
τm − τg
σm

(9)

should be a standard Gaussian. This is still true when the fit involves addi-
tional parameters, as long as the error σm has been correctly calculated.

The above definition of pull can be used for checking the properties of a
fitting algorithm with large numbers of pseudo-experiments. However, when
confronted with real data, the “true” value τg is not known and definition (9)
is useless. Fortunately there exists an alternative definition of pull for cases
where an external constraint is applied.

2.2 Constrained fits

Consider again the example of section 2.1, this time incorporating an extra
‘constraint’ τ = τc ± σc from some external measurement. In other words, in
the S expression we are trying to minimise, there is an extra term (τ−τc)

2/σ2
c .

Let the fitted value of τ , taking into account the external constraint, be
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τf ± σf . Then the pull

gc =
τf − τc
√

σ2
c − σ2

f

(10)

is usually a standard Gaussian. The denominator of the expression for gc

may at first sight look a bit surprising, but it is simply the error on the
numerator, taking into account the correlation between the errors in the fit
result τf and the constraint τc.

Equivalently, one can define a pull according to:

gm =
τm − τf
√

σ2
m − σ2

f

, (11)

where τm±σm is the fit result without the extra constraint. For large samples,
or for a linear model with Gaussian uncertainties, one can use equations (6)
and (7) to show that gc = gm. It should be noted however, that the large-
sample limit is not reached at the same rate by gc and gm (see section 5.1.)

The definition of gm allows one to examine the behaviour of pulls in two
limiting cases:

1. If the constraint is totally irrelevant (e.g. it refers to a previous mea-
surement of a variable that is completely unrelated to the present anal-
ysis), the fit will not improve the measurement and so

τf ± σf = τm ± σm. (12)

Then equation (11) reduces to gm = 0/0, which is not wrong.

2. If in contrast the extra constraint is exact, τf = τc and σf = σc =
0. In this case, τm should have been Gaussian distributed about the
constraint with variance σ2

m. The pull definition gives:

gm =
τm − τf
√

σ2
m − 02

, (13)

which is thus again a unit Gaussian. An example of this could be the
sum of the measured energies of all the final state particles in a reaction,
which should equal the (assumed exactly known) initial state energy.

So far we have stated without proof that pull distributions are expected
to be standard Gaussian. In order to study this statement more carefully
one needs to specify the ensemble on which pulls are defined. We defer a
discussion of this topic to section 5.
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2.3 Examples

In this section we give two examples of the use of pulls in constrained fits.
The first example (section 2.3.1) illustrates definition (10) of constrained
pulls, i.e. gc, whereas in the second example (section 2.3.2) the nature of the
constraint is sometimes such that only definition (11), i.e. gm, can be used.

2.3.1 Lifetime of CP eigenstates of Bs

In CDF, the decay channel Bs → ψφ can be analysed in terms of two different
lifetimes τs and τ` of the CP eigenstates of the Bs, which manifest themselves
in the different spin states of the ψ and φ, which in turn affect the vector
meson decay angular distributions [2].

In the fit of experimental data to these two lifetimes (and to other pa-
rameters), it is possible to impose a constraint that their suitably weighted
average τ̄c is given by the measured Bs lifetime of 1.54 ± 0.07 ps [3]. If we
generate a whole series of simulated experiments with values τs and τ` (whose
weighted average is 1.54 ps) and perform the constrained fit to extract the
average lifetime τ̄f ±σf and the fractional lifetime difference ∆Γ/Γ, we would
then expect τ̄f to be distributed such that its pull

gc =
τ̄f − 1.54

√

0.072 − σ2
f

(14)

is a unit Gaussian.

2.3.2 Kinematic fitting

This is the situation where we minimise

S =
∑

i

(

xfi − xmi

σmi

)2

(15)

subject to some constraint(s) (such as energy and momentum conservation for
a specific assumed reaction) on the fitted kinematic variables xfi of an event,
whose measured values before this fitting procedure are xmi ± σmi. Thus xi

could be the 4-momentum components of the tracks at a given vertex in the
event. In reality, the four xi variables of a track are likely to be correlated
with each other, which would require expression (15) to be extended to take
their correlations into account.

As a result of the fit, we determine the xfi and their errors σfi (each
σfi can be calculated as the shift in xfi needed to increase S by 1.0 from
its minimum value, when S is re-minimised with respect to the other xfj,
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j 6= i.) Then we expect the pulls

gmi =
xfi − xmi
√

σ2
mi − σ2

fi

(16)

to be distributed like standard Gaussians. This is just equivalent to equation
(11).

3 Pulls in hypothesis testing

The previous section described the use of pulls in parameter estimation,
where a pull distribution is obtained and compared to a standard Gaussian.
We now turn to a situation where a single pull is calculated and, assuming
its parent distribution to be standard Gaussian, an inference is drawn about
the validity of a given hypothesis. A slightly more general treatment of the
material presented in this section can be found on pages 277-278 of ref. [1].

Suppose we performed a series of measurements of a quantity τ and wish
to test the consistency of the latest measurement, τ`±σ`, with the average of
all measurements, τa±σa. We write τp±σp for the average of all measurements
prior to the latest one, and regard τp and τ` as uncorrelated.

For the combined result we have:

τa =
τpwp + τ`w`

wp + w`

, (17)

σa =
1√

wp + w`

, (18)

where wp = 1/σ2
p and w` = 1/σ2

` . The difference between the combined result
and the latest one is:

τa − τ` =
τpwp − τ`wp

wp + w`

, (19)

and the error σa` on τa − τ` is given by (remember that τ` and τp are uncor-
related):

σ2
a` = σ2

p

(

wp

wp + w`

)2

+ σ2
`

(

wp

wp + w`

)2

(20)

= (σ2
p + σ2

` )

(

1/σ2
p

1/σ2
p + 1/σ2

`

)2

(21)

=
σ4

`

σ2
p + σ2

`

(22)
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Rewriting equation (18) in terms of σp and σ` yields:

σ2
a =

σ2
p σ

2
`

σ2
p + σ2

`

. (23)

Comparing equations (22) and (23), one infers that:

σ2
a` = σ2

` − σ2
a. (24)

The pull of the latest measurement from the average value is therefore given
by

g` =
τ` − τa
√

σ2
` − σ2

a

. (25)

If the latest measurement is consistent with the average, g` should be dis-
tributed as a Gaussian with mean 0 and width 1, and can therefore be used
as a test statistic. It is identical to definition (11).

Needless to say, the equivalent definition

gp =
τa − τp
√

σ2
p − σ2

a

(26)

gives identical numerical values.

4 Non-asymptotic and pathological cases

In most cases we expect the pull distribution to tend to a standard Gaussian
only asymptotically. For small numbers of events, the likelihood function is
usually skewed, resulting in asymmetric error intervals and pull distributions
that are significantly non-Gaussian unless special care is taken in defining the
pulls. We discuss the definition of pulls from asymmetric errors in section
4.1. Later, in section 5.3, we will return to this definition with an example
that demonstrates the corresponding improvement in Gaussian shape of the
pull distribution.

It is also possible to encounter ill-defined problems, where pull distribu-
tions will never look Gaussian, regardless of the size of the data sample. We
present an example of such a pathology in section 4.2.

4.1 Asymmetric errors

Sometimes a fit returns asymmetric errors for a parameter. This happens for
example with the minos algorithm in the minuit package [4]. In this case
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the pull g should be defined as follows:

if (fit result) ≤ (true value) : g =
(true value) − (fit result)

(positive minos error)
,

otherwise : g =
(fit result) − (true value)

(negative minos error)
. (27)

This definition guarantees that the percentage of pulls between −1 and +1
equals the coverage of the error interval returned by minos, which should be
68.27% if 1-σ intervals are requested. This can be seen as follows. Suppose
τg is the true value of the parameter we are trying to determine, and τf is the
fit result, with σ+

f and σ−
f the absolute values of the positive and negative

errors calculated by minos. By definition of these minos errors, we have:

α = Pr(τf − σ−
f < τg < τf + σ+

f ), (28)

where α is (close to) 68.27%. This can be rewritten as:

α = Pr(−σ−
f < τg − τf < +σ+

f ). (29)

Next, we split the probability on the right-hand side into two non-overlapping
cases, τg − τf < 0 and τg − τf ≥ 0:

α = Pr(−σ−
f < τg − τf < 0) + Pr(0 ≤ τg − τf < +σ+

f ) (30)

Finally, dividing by σ−
f inside the first probability term and by σ+

f inside the
second one, we obtain:

α = Pr(−1 <
τg − τf
σ−

f

< 0) + Pr(0 ≤ τg − τf
σ+

f

< +1). (31)

The interpretation of this equation is straightforward: when τg < τf , divide
the difference by σ−

f , otherwise divide it by σ+
f , and this guarantees that a

fraction α of the time the result will be between −1 and +1.
There is of course no guarantee that the pull distribution will be Gaussian.

However, if it is, and its width is 1, then the coverage will be correct. It is
therefore always useful to plot the pull distribution according to the above
definition since it provides a good visual indicator of the accuracy of the error
estimates.

4.1.1 Example: exponential distribution

To illustrate some features of asymmetric likelihood functions, we investigate
a likelihood fit to a small number N of time values from an exponential

8



distribution, equation (8), with lifetime parameter τg = 1. The likelihood
estimate of τg is simply t̄, the mean of the N time values.

The pull is defined as

g =
t̄− τg
σ

. (32)

Four different pulls result from four different definitions of the error σ:

• g(1) uses σ = τg/
√
N , which is the approximate value of the expected

error.

• g(2) uses σ = t̄/
√
N , which is the parabolic error returned by the

likelihood fit.

• g(3) and g(4) make use of the asymmetric errors on the likelihood fit,
defined by the changes in t̄ required for the logarithm of the likelihood
to decrease by 0.5 from its maximum value. Then g(3) uses the upper
error σu if t̄ ≤ τg, and the lower error σl otherwise. Note that, because
of the asymmetry in the likelihood, σu will tend to be larger than σl.

• g(4) tries out the errors the other way around, i.e. σu if t̄ > τg, and σl

otherwise.

For samples of size N = 4 and N = 30, Table 1 shows the pull means
and standard deviations2.

N = 4 N = 30
Pull definition Mean Width Mean Width

g(1) 0.00 1.00 0.00 1.00
g(2) −0.67 1.88 −0.19 1.07
g(3) −0.31 1.43 −0.09 1.03
g(4) −1.06 2.44 −0.29 1.12

Table 1: Means and widths of pull distributions for samples of size 4 and 30,
for four definitions of pulls (see text).

The result for g(1) is obvious as the estimate t̄ has mean value τg and
variance τg/N . Hence the mean pull is zero and its variance is unity for any
value of N . However, for small N the distribution of the pull is non-Gaussian.
This is clear for the extreme case of N = 1, when the pull distribution is

2There is no need to perform Monte Carlo calculations, as the sum x of N independent
random variables, each exponentially distributed with lifetime parameter τg, is known
to have a gamma distribution 1

τN
g Γ(N)

e−x/τg xN−1. Therefore the distribution of t̄ is

NN

τN
g Γ(N)

e−Nt̄/τg t̄N−1.
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e−g−1 for pull values above −1, and zero otherwise. It becomes approximately
Gaussian for large N , because of the Central Limit Theorem.

It is then clear that g(2) will be biassed negatively. This is because
a negative pull, corresponding to a low value of t̄, will result in a small
estimate of the error used in the denominator of the pull definition. Hence,
as compared with g(1), the scale is expanded for negative pulls and contracted
for positive ones.

The pulls g(3) and g(4) both use errors which vary with t̄, and hence
share the tendency of g(2) to have a negative bias. Since g(4) uses a smaller
error for calculating negative pulls and a larger error for positive pulls, the
extent of the bias is increased. For g(3), the opposite is the case. This tends
to confirm the ‘obvious’ fact that when the data has asymmetric errors, it is
appropriate to use the upper error when the data is below the expectation.

Also as expected, the deviations from 0.0± 1.0 become smaller for larger
N .

4.2 Searching for a non-existent resonance

An interesting example [5] is provided by a smooth mass distribution being
fitted by a background shape and a resonance peak of arbitrary position and
arbitrary amplitude A ± σA, which can be positive or negative. Since the
mass distribution contains no resonance, the pull is simply A/σA. Because
of fluctuations however, this turns out to have a bimodal distribution, with
peaks more or less symmetrically situated above and below zero. It has a
minimum at the origin (where a standard Gaussian pull distribution has its
maximum). This arises because the fit of a resonace peak with arbitrary
position will pick out the mass region which most deviates from the smooth
shape. In order for a fit to return A = 0, we thus require there to be no
significant deviations across the whole mass distribution; this is very unlikely.

As the number of events in the distribution increases, fluctuations become
relatively smaller, and the positions of the bimodal peaks move in towards
zero pull. However, the minimum at zero is maintained.

5 Pseudo-experiment ensembles for testing

pulls

When generating pseudo-experiments to test the properties of a fitting al-
gorithm that includes constraints, it is necessary to understand which pa-
rameters to fluctuate, and how to fluctuate them. For example, an event
rate which is subjected to a Gaussian constraint is sometimes fluctuated ac-
cording to a Poisson distribution whose mean is itself fluctuated around the
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Gaussian constraint. This method is wrong, as can easily be seen by con-
sidering that the probability for a given event rate to occur in the pseudo-
experiment ensemble is different from that predicted by the likelihood model.
The correct method is to fluctuate the event rate according to a Poisson dis-
tribution with fixed mean, and separately to fluctuate the constraining value
according to its Gaussian distribution3. Once the question of how to run
pseudo-experiments is properly resolved, one can check whether the data
sample size is large enough for the pull distribution to be standard Gaussian.
In this section we start by examining the effect of sample size on the shape
of pull distributions (subsection 5.1). We then calculate the expected widths
of pull distributions for a very general pseudo-experiment ensemble that in-
cludes the “correct” and “wrong” ensembles described above as special cases
(subsection 5.2). This provides a demonstration of the importance of using
the proper ensemble to study pulls. In the last subsection we argue that the
use of minos errors in minuit fits yields better-behaved pulls than parabolic
errors.

To fix ideas, we will be working with the example first introduced in
section 2.1, namely the measurement of a time constant with the following
likelihood:

L(τ) =
e−

1

2
( τ−τc

σc
)
2

√
2π σc

N
∏

i=1

(

1

τ
e−ti/τ

)

=
e−

1

2
( τ−τc

σc
)
2

√
2π σc

e−
Nt̄
τ

τN
(33)

In the absence of the constraint (σc → ∞), the maximum likelihood estimate
τm of τ , and its uncertainty σm, are given by:

τm = t̄ ≡ 1

N

N
∑

i=1

ti, (34)

σm = σt̄ =
t̄√
N
. (35)

When the constraint is enforced as in section 2.2, the fitted value τf is no
longer simply equal to t̄, although it remains a unique function of t̄ and the
constraining value τc.

5.1 Effect of sample size on pull distributions

We ran sets of pseudo-experiments to study the distributions of the various
types of pull defined in this note, and their dependence on the number of
measurements N . Each pseudo-experiment was generated as follows:

3We can see that this procedure is reasonable for the example of section 3. To test that
procedure by Monte Carlo, we would vary both τa and τ` in Gaussian fashion according
to their errors. This corresponds in this case to fluctuating the constraint and the Poisson
data sample.

11



1. Generate N random ti values according to an exponential distribution
with fixed time constant τg;

2. Generate a constraint τc according to a Gaussian with mean τ̄c and
width σc;

3. Fit the ti to an exponential distribution whose time constant is the fit
parameter and is constrained to τc ± σc.

Unless one is interested in studying the bias introduced by constraining to
the wrong time constant, one will usually set τ̄c ≡ τg.

We generated three sets of pseudo-experiments with τg = τ̄c = 5 and with
N = 10, 100 and 1000 respectively. In each case we set the uncertainty σc on
the constraint to be equal to the expected uncertainty on the corresponding
unconstrained result, i.e. τg/

√
N .

The results for N = 100 are shown in Figures 1 and 2. Figures 1(a), (b)
and (c) show the distributions of the generated constraint τc, the fit result
without constraint τm, and the fit result with constraint τf . Because of the
large number of measurements per pseudo-experiment, the distribution of
τm is reasonably Gaussian. So is the distribution of τf which, as expected,
is narrower than both the distributions of τc and τm. Plots 1(d), (e) and
(f) show distributions of the pulls defined by equations (27), (10) and (11),
respectively. The g and gc pull distributions are Gaussian, but gm is clearly
not. In order to understand this, we plot distributions of the numerators
and denominators of the pulls in Figure 2. The numerators all appear to be
Gaussian, including the numerator of gm. In fact, judging by the χ2/ndf val-
ues, the numerator of gm is even more Gaussian-like than the τm distribution,
indicating that some cancellation of non-Gaussian effects takes place in the
difference τm − τf . As expected, the means of the denominator distributions
agree with the RMS widths of the corresponding numerator distributions. If
one were to divide the pull numerators by these RMS widths, the resulting
pull distributions would be perfectly normal (i.e. Gaussian with mean 0 and
width 1.) When dividing by the proper denominators however, fluctuations
in the latter distort the pull distributions. A measure of the magnitude of
these fluctuations is provided by the RMS/mean ratios of the denominator
distributions. These are equal to 4%, 5% and 21% for g, gc and gm, respec-
tively. The large fluctuations in the denominator of gm are clearly responsible
for the non-Gaussian tail in the corresponding pull distribution.

Figures 3 and 4 show the same plots as Figures 1 and 2 for a set of
pseudo-experiments with N = 10, i.e. in a regime where the asymptotic
limit is no longer a good approximation, as can be seen in the distribution
of τm (Figure 3(b).) Not only gm, but now also the gc pull distribution is
beginning to develop a strong non-Gaussian tail.
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Finally, Figures 5 and 6 show what happens when N is increased to 1000.
Now even the gm pull is beginning to look quite Gaussian.

We conclude from these studies that different definitions of pulls have
different rates of convergence towards the asymptotic limit. Among the three
definitions we have considered, g converges the fastest, and gm the slowest.

5.2 Effect of pseudo-experiment ensembles on pull dis-

tributions

To study the behaviour of pulls in various ensembles of pseudo-experiments,
we start from a very general ensemble, in which each pseudo-experiment is
defined as follows:

1. Generate a random time constant τ◦ according to a Gaussian with mean
τg and width στ◦ ;

2. Generate N random ti values according to an exponential distribution
with time constant τ◦;

3. Generate a constraint τc according to a Gaussian with mean τg and
width στc

;

4. Fit the ti to an exponential distribution whose time constant is the fit
parameter and is constrained to τc ± σc.

This general ensemble depends on five parameters: N , τg, στ◦ , στc
, and

σc, and requires the generation of N + 2 independent random numbers per
pseudo-experiment: τ◦, τc and t1 . . . tN . What we called “correct method” in
the introduction to section 5 corresponds to στ◦ = 0 and στc

= σc, whereas
what we called “wrong method” corresponds to στc

= 0 and στ◦ = σc.
In the following subsections we calculate analytically the widths of the g

and gc pull distributions in the asymptotic limit, and illustrate the results
with Monte Carlo calculations.

5.2.1 Standard deviation of g pulls

The g pull is defined by:

g =
τf − τg
σf

. (36)

In the asymptotic limit, the fit result τf ± σf is given by equations (6) and
(7), where σm = τ◦/

√
N . Since σm depends on the random variable τ◦ it

is itself a random variable, with standard deviation στ◦/
√
N . For large N

we can neglect the fluctuations of σm compared to those of τ◦, and hence
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to those of the numerator of (36). Accordingly we will write σm
∼= τg/

√
N .

Thus we have:

τf =
Nt̄/τ 2

g + τc/σ
2
c

N/τ 2
g + 1/σ2

c

(37)

σf =
1

√

N/τ 2
g + 1/σ2

c

(38)

We will use these equations to calculate the standard deviation σg = στf
/σf

of the g pulls, where στf
is the standard deviation of τf . Note that in principle

στf
could be different from σf , because the former depends on how pseudo-

experiments are fluctuated, whereas the latter is the result of a fit, and the
fitter knows nothing about where the data came from. We have in fact:

σ2
τf

≡ E
[

(τf − τg)
2
]

(39)

= E





(

N(t̄− τg)/τ
2
g + (τc − τg)/σ

2
c

N/τ 2
g + 1/σ2

c

)2


 (40)

=

N2

τ4
g
E
[

(t̄− τg)
2
]

+ 1
σ4

c
E
[

(τc − τg)
2
]

+ 2N
(τgσc)2

E[(t̄− τg) (τc − τg)]
(

N/τ 2
g + 1/σ2

c

)2 (41)

The expectation values depend on the pseudo-experiment ensemble; in this
case they are:

E
[

(t̄− τg)
2
]

= σ2
τ◦ +

τ 2
g

N
(42)

E
[

(τc − τg)
2
]

= σ2
τc

(43)

E [(t̄− τg) (τc − τg)] = 0 (44)

Plugging these expectations back into the expression for σ2
τf

and taking the
square root yields:

στf
=

√

N
τ2
g

(

1 + N
τ2
g
σ2

τ◦

)

+
(

στc

σ2
c

)2

N
τ2
g

+ 1
σ2

c

(45)

Dividing by σf , we obtain finally:

σg =

√

√

√

√

√

√

√

N
τ2
g

(

1 + N
τ2
g
σ2

τ◦

)

+
(

στc

σ2
c

)2

N
τ2
g

+ 1
σ2

c

(46)

We consider two special cases:
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1. στ◦ = 0 and στc
= σc.

This corresponds to the correct way of running pseudo-experiments. In
this case, equation (46) gives σg = 1. The distribution of the g-pull
will be standard Gaussian.

2. στc
= 0 and στ◦ = σc.

This corresponds to the wrong way of running pseudo-experiments.
Equation (46) reduces to σg = σc

√
N/τg. The g-pull distribution will

not be standard Gaussian, except when σc = τg/
√
N , i.e. when the

uncertainty on the constraint matches the expected uncertainty on the
unconstrained result.

5.2.2 Standard deviation of gc pulls

The gc pull is defined in equation (10). To calculate σgc
we will again use the

approximation σm
∼= τg/

√
N . The standard deviation of the numerator of

the gc pull, (τf −τc), can be calculated in the same way as στf
in the previous

section. We find:

σ(τf−τc) =

N
τ2
g

√

τ2
g

N
+ σ2

τ◦ + σ2
τc

N
τ2
g

+ 1
σ2

c

. (47)

On the other hand, the denominator of the gc pull can be rewritten as:

√

σ2
c − σ2

f =

√
N

τg
σc

√

N
τ2
g

+ 1
σ2

c

, (48)

so that:

σgc
=

√

√

√

√

√

τ2
g

N
+ σ2

τ◦ + σ2
τc

τ2
g

N
+ σ2

c

. (49)

It is easy to see that σgc
= 1 in either of the two special cases considered

earlier, namely στ◦ = 0 and στc
= σc, or στc

= 0 and στ◦ = σc. In other words,
the gc pull has a standard Gaussian distribution for both the “correct” and
“wrong” ways of running pseudo-experiments. The same conclusion applies
to the gm pull since gm and gc are asymptotically equal (section 2.2).

5.2.3 Comparison with Monte Carlo calculations

We illustrate the above results in Figure 7, where we plot the g, gc and gm

pull distributions for “correct” and “wrong” ensembles of pseudo-experiments
with N = 1000, τg = 5 and σc = 0.03162. As expected, all distributions are
standard Gaussian except that of the g pull for the wrong ensemble. Plugging
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N = 1000, τg = 5, στ◦ = σc = 0.03162 and στc
= 0 in equations (45) and (38)

yields στf
= 0.0062 and σf = 0.031, so that στf

/σf = 0.2, in agreement with
the width of the distribution in plot (d).

5.3 Pull distributions for minos errors

Figure 8 shows distributions of the minos error, the parabolic error, and
various pulls for an ensemble of “correct” pseudo-experiments with N = 10,
τg = 5 and σc = 0.1581. For this example the magnitudes of the positive and
negative minos errors differ by about 15% on average. Judging by the χ2/ndf
values, the distribution of the minos pull from definition (27) is clearly more
Gaussian-like than the g pull using the parabolic error. However, if the minos

error assignment in equation (27) is reversed, the resulting pull distribution
displays a strong non-Gaussian tail. That the assignment of equation (27) is
indeed correct can be seen more directly by plotting a combined histogram
of the positive and negative errors (plots (c) and (d)).

We conclude that in non-asymptotic situations pulls calculated from mi-

nos errors are “better behaved” than pulls calculated from parabolic errors,
and that equation (27) uses the correct assignment of minos errors.

6 General recommendations for the use of

pulls in parameter estimation problems

Whenever one is doing a fit, pull distributions should be plotted to check that
the fit is giving sensible results. In situations that involve many separate
fits (e.g. track fitting for a whole series of events), each fit provides its
own pull(s), and the distribution can easily be obtained. If, however, the
experiment involves the estimation of just one set of parameters, the pull
distribution can be looked at only for a simulated set of repetitions of the
experiment. Such pseudo-experiments should always be designed so that the
probability of a given pseudo-data sample in the pseudo-experiment ensemble
is equal to the probability predicted by the likelihood (or chisquare) model
for this sample.

In the majority of cases, one expects the pull distribution to be a standard
Gaussian. One thus needs to confirm that it is centered at zero, has unit
width, and has no long tails. If this is not the case, one may need to look at
the measurement setup, the experimenter’s assumptions, etc. We give two
simple examples:

1. Suppose we measure the three angles of a triangle as θm
i . Improved

values θf
i can be obtained by imposing the condition that the angles

add up to 180◦. The pull would be sensitive to effects such as the errors
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being incorrectly assigned, the triangle not being closed, the geometry
not being flat (e.g. the triangle is drawn on a sphere), etc.

2. In the kinematic fitting example of Section 2.3.2, pulls can be exam-
ined to look for effects such as biased momentum measurements, mis-
alignment of the detector, oddities of the kinematic fitting procedure,
contamination from other reactions, etc.

It may happen that the pull distribution is approximately Gaussian, but
its width is not 1. Assuming that this is understood to be an effect of the
non-asymptotic nature of the problem and not a programming error (this
can always be tested by running pseudo-experiments closer to the asymptotic
limit!), one may want to correct the quoted uncertainties by multiplying them
by the width of the pull distribution.

In other cases the non-asymptotic nature of the problem manifests itself
by the appearance of tails in the pull distribution. One must then be careful
with the interpretation of the uncertainties. If the percentage of pulls between
−1 and +1 is 68.27%, then “1-σ” errors have the usual meaning. However,
since the pull distribution is not Gaussian, “2-σ” errors no longer have a
coverage of 95.45%, etc.

Finally, as illustrated in section 5, one should keep in mind that different
pull definitions have different rates of convergence towards the asymptotic
limit. Thus it may be that the choice of pull definition itself is the cause of
non-Gaussian distortions in the pull distribution.
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Figure 1: Results of a pseudo-experiment run with τg = τ̄c = 5, σc = 0.5
and N = 100 (see text). Plots (a), (b) and (c) show distributions of the
constraint τc, the unconstrained fit result τm, and the constrained fit result
τf , respectively. Plots (d), (e) and (f) show pull distributions according to
definitions (27), (10) and (11), respectively.
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Figure 2: Distributions of the numerators and denominators of the pulls g,
gc and gm shown in Figure 1.
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Figure 3: Results of a pseudo-experiment run with τg = τ̄c = 5, σc = 1.581
and N = 10 (see text). Plots (a), (b) and (c) show distributions of the
constraint τc, the unconstrained fit result τm, and the constrained fit result
τf , respectively. Plots (d), (e) and (f) show pull distributions according to
definitions (27), (10) and (11), respectively.
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Figure 4: Distributions of the numerators and denominators of the pulls g,
gc and gm shown in Figure 3.
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Figure 5: Results of a pseudo-experiment run with τg = τ̄c = 5, σc = 0.1581
and N = 1000 (see text). Plots (a), (b) and (c) show distributions of the
constraint τc, the unconstrained fit result τm, and the constrained fit result
τf , respectively. Plots (d), (e) and (f) show pull distributions according to
definitions (27), (10) and (11), respectively.
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Figure 6: Distributions of the numerators and denominators of the pulls g,
gc and gm shown in Figure 5.
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Figure 7: Pull distributions for pseudo-experiments with N = 1000, τg = 5
and σc = 0.03162. Plots (a), (b) and (c) show the result of using the correct
ensemble of pseudo-experiments (στ◦ = 0, στc

= σc), whereas plots (d), (e)
and (f) show the result of using a wrong ensemble (στc

= 0, στ◦ = σc). See
text for further details.
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Figure 8: Result of a pseudo-experiment run with N = 10, τg = 5 and σc =
0.1581. Each pseudo-experiment was generated according to the algorithm
described in section 5.1. Plot (c) is a histogram of the positive minos error
for pseudo-experiments where the fit result τf is smaller than the “true”
value τg, and of minus the negative minos error for the remaining pseudo-
experiments. Plot (d) shows the opposite minos error assignment. Similarly,
plot (g) shows the g pull according to equation (27) and plot (h) the g pull
with the opposite minos error assignment.
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